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Abstract

We study caching strategies for proxies that cache VBR-encoded continuous media
objects for highly interactive streaming applications. First, we develop a model for
streaming VBR-encoded continuous media objects. This model forms the basis for a
stream admission control criterion and our study of caching strategies. We find that
unlike conventional web caches, proxy caches for continuous media objects need to
replicate or stripe objects to achieve high hit rates. We develop novel caching strategies
that either implicitly or explicitly track the request pattern and cache (and replicate)
objects accordingly. Our numerical results indicate that our caching strategies achieve
significantly higher hit rates than caching without object replication. © 2002 Elsevier
Science Inc. All rights reserved.
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1. Introduction

The dramatic growth of the World Wide Web has spurred the deployment
of proxy caches. These store frequently requested objects close to the clients in
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the hope of satisfying future client requests without contacting the origin ser-
ver. Highly localized request patterns, which exhibit hot-spots, i.e., frequent
requests for a small number of popular objects, have made caching highly
successful in reducing server load, network congestion, and client perceived
latency. While most of the caching research to date has focused on caching of
textual and image objects, web-based streaming of continuous media, such as
video and audio, becomes increasingly popular. In fact, it is expected that by
2003, continuous media will account for more than 50% of the data available
on origin servers [12]. This trend is reflected in a recent study [1], which found
that the number of continuous media objects stored on web servers has tripled
in the first nine months of 1998.

Caching and streaming of continuous media objects with proxy servers
poses many new challenges [28]. These are due to the real-time constraints
imposed by continuous media traffic and the high degree of interactivity ex-
pected by users. In this paper we focus on caching strategies for proxies that
cache Variable Bit Rate (VBR)-encoded continuous media for highly interac-
tive streaming applications in disk arrays. We consider an architecture where
the proxy servers cache frequently requested continuous media objects in their
local storage, which is typically a disk array. The clients direct their streaming
requests to their assigned proxy server. If the proxy can satisfy the streaming
request — a cache hit — the object is streamed from the proxy to the client. If the
proxy cannot satisfy the request — a cache miss — the object is obtained from the
appropriate origin server and the proxy decides according to a caching strategy
whether or not to cache the object.

The contribution of this paper is twofold. First, we develop a stream model
for streaming VBR-encoded continuous media objects from the proxy’s disk
array over an access network to the clients. Based on the stream model we
design a scheme for admission control and resource reservation that provides
stringent statistical Quality of Service (QoS) guarantees.

Our second contribution is to study caching strategies for continuous media
objects. Our study shows that unlike conventional web caches, proxy caches for
continuous media should replicate or stripe objects to accommodate the typ-
ically highly localized request patterns and to ensure good stream quality. We
develop natural extensions of conventional caching strategies which implicitly
track the client request pattern by combining object replication with a con-
ventional replacement policy, such as Least Recently Used (LRU) or Least
Frequently Used (LFU). We then develop and evaluate a novel caching
strategy which explicitly tracks the client request pattern and caches objects
accordingly. Our numerical results indicate that the hit rate achieved by our
caching strategy with explicit tracking is almost 20% higher than the hit rate of
caching with implicit tracking. Caching with implicit tracking in turn achieves
typically 10% higher hit rates than conventional caching without object repli-
cation.



M. Reisslein et al. | Information Sciences 140 (2002) 3-31 5

1.1. Related work

There are only few studies of caching and streaming of continuous media
objects with proxy servers which are complementary to the issues studied in
this paper. Rejaie et al. [25] propose a proxy caching mechanism in conjunction
with a congestion control mechanism [23,24] for layered-encoded video. With
layered encoding the compressed video stream is split into a base layer, which
contains low quality encoding information, and enhancement layers, which
improve the stream quality. The basic idea of their caching mechanism is to
cache layers according to the objects’ popularities: the more popular an object,
the more layers are cached. When streaming an object to a client, the layers
that are not cached at the proxy are obtained from the origin server. A related
idea is explored by Wang et al. [37] in their study on video staging. With video
staging the part of the VBR video stream, that exceeds a certain cut-off rate
(i.e., the bursts of the VBR stream) is cached at the proxy while the lower (now
smoother) part of the video stream is stored at the origin server. Our work is
complementary to these studies on caching of video layers. Our focus is on (1)
developing a stream model and admission control conditions that ensure sta-
tistical QoS for continuous media streaming, and (2) object replication and
striping to accommodate the typically highly localized client request pattern
while providing good stream quality.

Sen et al. [32] propose to cache a prefix (i.e., the initial frames) of video
streams at the proxy and to employ work-ahead smoothing while streaming the
object from the proxy to the client. The cached prefix hides the potentially large
initial start-up delay of the work-ahead transmission schedule from the client.
A major drawback of this approach is that it is not suited for interactive video
streaming. The client experiences a potentially large delay after invoking an
interaction (such as a temporal jump) since the work-ahead smoothing
schedule has to build up a buffered reserve at the client before playback can
resume.

Tewari et al. [36] propose a Resource Based Caching (RBC) scheme for
Constant Bit Rate (CBR) encoded video objects. They model the cache as a
two resource (storage space and bandwidth) constrained knapsack and study
replacement policies that take the objects’ sizes as well as CBR bandwidth into
account. Our work differs from RBC in that we consider VBR encoded video
objects. Also, object replication and striping as well as interactive streaming are
not addressed by Tewari et al.

There is a large body of literature on striping of video objects in the context
of video servers. Most of these studies assume that the videos are CBR en-
coded; see for instance [8,11,18]. Striping for VBR encoded video objects is
studied by Shenoy and Vin [33]. They develop an analytical model for the most
heavily loaded disk and study the optimal striping placement. Sahu et al. [29]
study round based retrieval strategies for VBR video from disk. These studies
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on striping and retrieval of VBR video assume that the user request pattern is
uniform and do not consider interactive delays.

Birk [2] proposed an approach where the video blocks are placed randomly
on the disk array to overcome the hot-spot problem. In his scheme interactive
requests, which result from client interactions, are given priority over se-
quential retrievals to ensure short interactive delays. This approach appears
promising in the context of proxy streaming of interactive VBR video, al-
though there are some issues that require further research. Most importantly, a
stream admission control rule that ensures statistical QoS when retrieving
randomly placed blocks of VBR video from the disk array requires more re-
search. Also, the performance of the scheme when the proportion of interactive
requests is high needs to be examined.

2. Architecture

In this section we describe the end-to-end architecture for the delivery of
continuous media objects using proxy servers. The architecture is illustrated in
Fig. 1. The continuous media objects are stored on the origin servers. The
continuous media objects are prerecorded audio and video objects, such as
CD-quality music clips, short video clips (e.g., trailers or music videos) or full-
length movies or on-line lectures. The proxy server is located close to the
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Fig. 1. Architecture for continuous media streaming with proxy server.
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clients. It is connected to the origin servers via a wide area network (e.g., the
Internet). The proxy server is connected to the clients via a local access net-
work. The local access network could be a LAN running over Ethernet, or a
residential access network using xDSL or HFC technologies.

In the following we briefly outline the delivery procedure for continuous
media objects. The client directs its request for a particular continuous media
object to its assigned proxy server (for instance by using the Real Time
Streaming Protocol (RTSP) [31]). If the continuous media object is not cached
in the proxy, that is, in the case of a cache miss, the proxy forwards the request
to the appropriate origin server. The origin server streams the continuous
media object to the proxy server. The proxy relays the stream to the requesting
client and at the same time caches the continuous media stream in its local
storage. If the local storage (typically disk array) at the proxy is full the proxy
decides according to a replacement policy (see Section 5) which continuous
media object to remove from the cache to make room for the new object. If the
replacement algorithm fails to free up enough disk space for the the new ob-
jects (this is the case when not enough objects can be removed without inter-
rupting ongoing streams; see Section 5) the object is streamed from the origin
server directly to the client. In the case of a cache miss the proxy server does
not reduce the bandwidth usage in the wide area network, neither does it im-
prove the stream quality and the level of interactivity offered to the client.

In the case of a cache hit, that is, when the continuous media object re-
quested by the client is cached in the proxy’s disk array, the object is streamed
from the proxy over the local access network to the client.

Before the streaming commences the proxy conducts in both cases admis-
sion control tests to verify whether the available disk bandwidth and the
bandwidth in the local access network are sufficient to support the new stream.
Only if the admission tests are successful is the requested object streamed from
the origin server (in the case of a cache miss) or from the proxy (in the case of a
cache hit).

3. Model for continuous media streaming from proxy

In this section we model the streaming of continuous media from the proxy.
Our analysis applies to any type of continuous media traffic, however, to fix
ideas we focus on streaming of video objects. We naturally assume that the
video objects are VBR encoded. For VBR encoding the quantization scale is
kept constant to maintain high video quality even for high action scenes. For
the same quality level the file size and average bit rate of a CBR encoded movie
or sports clip are typically two times or more than the file size and average bit
rate of the VBR encoding [4,35]. Our first contribution is to develop a unified
scheme for admission control and resource reservation in the proxy server as
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well as the local access network. Toward this end we first develop a disk model
and derive the effective disk bandwidth for the retrieval of continuous media
traffic with tight interactive delay constraints. We then develop a stream model
for the VBR-encoded continuous media traffic and design a scheme for ad-
mission control and resource reservation that provides stringent statistical

QoS.
3.1. Disk model

We assume that each disk in the proxy’s disk array consists of a single
platter side and a single arm. We assume that the proxy server retrieves data for
the ongoing video streams in constant-time rounds; we denote the round length
by 7. We also assume that each disk in the disk array uses the SCAN sched-
uling algorithm [19]. Specifically, in each round, each disk arm sweeps across
its entire platter exactly once with no back tracking. With the SCAN sched-
uling algorithm, the overhead incurred within a round for a given disk is

disk overhead = /e + 11,01,

where I is the number of streams that the disk is servicing. The constant /g 1s
the maximum seek time of the disk (i.c., the time to move the arm from the
center to the edge of the platter, which is equal to the time to move the arm
from the edge to the center of the platter). The constant /., is the per-stream
latency, which includes the maximum rotation time of the disk and the track-
to-track seek time. Table 1 summarizes our disk notation and the nominal
values for the disk parameters. The nominal parameters reflect the current
performance of high-speed disks [34].

The initial start-up delay as well as the responsiveness to an interactive re-
quest (pause/resume or a temporal jump) is typically modeled to be twice the
round length, 27, when the SCAN algorithm is used. This delay model is based
on the worst-case assumption that the request of the user arrives just after the
start of a round, say round k, and arrives too late to be scheduled by the SCAN
algorithm for round k. The request has to wait for the start of the next round.
The request is included in the disk read schedule of round £ + 1 and the re-
quested video data is read into the disk buffer during round & + 1. The disk
buffer of round £+ 1 becomes the network buffer of round &+ 2 and the

Table 1

Nominal values of disk parameters
Parameters Notation Nominal value
Disk size X 13 Gbytes
Disk transfer rate r 8.5 Mbytes/s
Maximum seek time Lseek 18 ms

Rotational latency Lot 5 ms
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transmission of the requested video data out of the network buffer starts at the
beginning of round k 4 2. Thus, the disk-subsystem introduces a maximum
delay of two rounds, i.e., 27. We shall assume that the maximum disk-sub-
system delay is constrained to 0.5 s. Therefore, we use a round length of
T =0.25 s. Note that the total interactive delay also includes transmission
delays as well as client de-smoothing and decoding delays. These additional
delays add another 0.25-0.5 s to the 0.5 s disk-subsystem delay, giving a total
delay on the order of 0.75-1.0 s. Thus, with a round length of 0.25 s the system
is able to give the user a pleasurable interactive experience with less than 1 s
delay for all interactions.

For the development of the disk model we assume for now that the video
objects are placed in the proxy’s disk array using the localized placement
strategy. With the localized placement strategy each video file is placed con-
tiguously on a single disk. We shall later study a number of more complex
striping placement strategies, whereby each video file is striped across a subset
of the disks in the proxy’s disk array.

Now consider one of the disks in the proxy’s disk array and suppose that
this disk is servicing I streams. Let retr(/,T) denote the number of bits re-
trieved for the I streams in one round of length 7' The disk transfers this video
data at the disk transfer rate r. Thus the total disk transfer time within a round
is retr(Z, T)/r. The total disk overhead within a round is /e, + /;or. Thus the
amount of time the disk requires to service the / ongoing streams in a round is
retr(1, T)/r + lseek + Ilor- For lossless service the time required to service the 7
streams in a round must be no greater than the round length itself

tr(/, T
m"‘ lseek +[lr0t<T'

Rearranging the terms in the above inequality, we obtain the maximum
streaming rate for lossless service:

retr(, T lseer + 11,
7(7, ) ér(l _ e ol 7 Ot) =: Cyisk, (1)

which we refer to as disk bandwidth. With the disk parameters from Table 1 the
disk bandwidth is (63.1 — 1.36-7) Mbps. The disk bandwidth is obviously
upper bounded by the disk transfer rate. Note that the disk bandwidth in-
creases for increasing round length 7. We therefore use a round length of
T =0.25 s, the largest round length that guarantees a maximum interactive
delay of 1 s. Note furthermore that the disk bandwidth decreases as the number
of ongoing streams [ increases. This is because the disk wastes a larger fraction
of the round with seeks and rotations when the number of ongoing streams
increases.
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3.2. Stream model

We now develop a model for the VBR video streams that are retrieved from
the proxy’s disk array and sent over the local access network to the clients. We
assume in the basic stream model that the video objects are retrieved from a
single disk, that is, we assume localized placement in the proxy’s disk array. We
shall consider streaming from a disk array with striping placement later.

In our stream model we assume random stream phases, which accurately
model interactive streaming. We base the stream model on the distribution of
the frame sizes, as proposed in [20]. We chose this approach because it provides
simple and accurate admission control decisions through the Large Deviation
Approximation [26]. The many models that are based on Markov modulated
processes (e.g., [17]) model traffic quite accurately. However, for admission
control they are either more complex (requiring the calculation of many state
transition probabilities) or employ the asymptotic theory of effective band-
width which is less accurate for small buffers and bursty video traffic [14].

Consider a single disk in the proxy’s disk array and suppose that this disk is
streaming / video objects. For simplicity we assume that each video object has
N frames and a frame rate of F frames per second. Let f, (i) denote the number
of bits in the nth encoded frame of video object i, i = 1,...,7. We assume that
all video objects are cached in the proxy; the frame size trace {f,(i), 1 <n< N}
for video object i is therefore a sequence of known integers. As pointed out
above the video frames are retrieved from disk in rounds of length 7. For each
ongoing video stream let K denote the number of frames retrieved in one
round; clearly K = T - F. (In our numerical work we use a round length of
T =0.25 s and a frame rate of F = 24 frames/s, thus K = 6 in our numerical
examples.) Following the terminology of the file server literature [33] we refer
to the K frames retrieved in one round as block. Let x,,(i) denote the size of the
block (in bits) retrieved for video stream 7 in round m. Assuming that the
frames of the video object are retrieved strictly sequentially, that is, the first K
frames are retrieved in round 1, the next K frames are retrieved in round 2, and
so on; in other words by excluding client interactions, we have

mK
. . N
Xa(i) = Su(i), m:l,...,E.
)

n=(m—1)K+1

We refer to the sequence {x,(i), | <m<N/K} as block size trace for stream i.
Following [20] we model the random start times of the video streams and the
client interactions by assigning to video object i the random phase 0,. (These
client interactions such as pause/resume and forward/backward temporal
jumps can be communicated to the proxy using the RTSP [31]; we assume in
our model that the temporal jumps have the granularity of blocks, i.e., K
frames.) It is natural to assume that the random phases 0;, i=1,...,I, are
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independent and uniformly distributed over [0,N —1]. In our model the
amount of data retrieved from disk for video stream 7 in round m is

X, (1) = X, (i),

where the index m + 0; is wrapped around if it exceeds the number of blocks
N/K of the video object. The total amount of data retrieved in round m for the
I ongoing video streams is

1 1
X = ZX,,,(i) = me+9[(i)- (2)
i=1 =1
We now briefly summarize the main implications of our stream model:
1. For each fixed round index m, X,(1),...,X,(I) are independent random
variables.

2. The probability mass function of X,,(i) can be obtained directly from the
block size trace of the cached video object:

K N/K
P (i) = 1) = D 1u() = 0).
m=1
Note that the distribution of X, (i) does not depend on the round index m.
To simplify notation we write henceforth X (i) for X, (i) and X for X,,.
We now proceed to develop stream admission rules that ensure a high user
perceived quality of the streamed continuous media while efficiently utilizing
the bandwidth resources in the proxy’s disk array and the local access network.
Toward this end we define statistical QoS requirements. Specifically, we define
the loss probability as the long run average fraction of information (bits) lost
due to the limited bandwidth (in disk array and local access network) and
admit a new stream only if the loss is less than some miniscule ¢, such as
€ = 107°. Formally, the loss probability due to the limited disk bandwidth is
given by

gk _ EIX = CancT)"]
Ploss - Tﬁ’ (3)

where the expectation is over all possible phase profiles. Note that up to this
point we have considered a single disk in the proxy’s disk array. To formally
define the loss probability due to the limited bandwidth in the local access
network we consider the aggregate streaming rate from the proxy’s disk array
(resulting from cache hits) as well as the streaming from the origin servers
(resulting from cache misses). Let D denote the number of disks in the proxy’s
disk array and let X? be the random variable denoting the amount of data
retrieved in one round from disk d, d = 1,...,D. The aggregate amount of
data retrieved from the proxy’s D disks in one round is ZdDzl X9, Furthermore,
let X° be the random variable denoting the amount of data fed into the local
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access network in one round from the origin servers. The total amount of data
fed into the local access network in one round is

Y = ZD:X“'JrX". (4)

]
The network loss probability is

Pnet _ E[(Y B CHBtT)+]
loss — T’

(5)

where C,. denotes the bandwidth available for streaming continuous media
objects into the local access network. This bandwidth could, for instance, be
the bandwidth of the link connecting the proxy to an xDSL central office, or
the bandwidth of the cable trunk that the proxy feeds into.

The overall streaming loss probability is bounded by the sum of the disk and
network loss probabilities. Our statistical QoS requirement is that the
streaming loss probability be less than some miniscule e:

Pi 4 P <. (©)

loss

Before granting a new streaming request we verify whether (6) continues to
hold when including the new stream in (2) (for the appropriate disk; recall we
are assuming localized placement) and (4).

Evaluating the probabilities in (6) involves the convolution of independent
random variables, which often leads to numerical problems. We therefore
apply the Large Deviation approximation, which is known to be accurate and
computationally efficient [26]. Let u,(s) denote the logarithmic moment gen-
erating function of X, the amount of data retrieved from a given disk in one
round,

py(s) = InE[e™].

Clearly

by the independence of the X (7)’s. The individual iy (s)’s are easily obtained
from the respective round size traces. The Large Deviation approximation for
the disk loss probability is [26]

disk —5™ Caisk T+pix (s™)
sk e , 7
loss E[Y]Sﬁz ZTE,US,( (SW) ( )

where s* satisfies

fy(s™) = Cais T
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Assuming that the streams retrieved from the D disks in the proxy’s disk array
are mutually independent it is straightforward to write out the corresponding
Large Deviation approximation for PS..

3.3. Striping placement

In this section we study streaming from a proxy that uses striping placement
of video objects in its disk array. Recall that D denotes the number of disks in
the proxy’s disk array. We shall at first focus on full striping, whereby each
video object is striped over all D disks in the proxy. There are essentially two
different striping techniques: Fine Grained Striping (FGS) and Coarse Grained
Striping (CGS) [7,16]. With FGS each block (consisting of K frames) is seg-
mented into D equal-sized parts, called stripes, and each of the disks stores one
of the block’s stripes. When retrieving a block from the disk array, the server
reads all D stripes in parallel. With CGS (also referred to as Data Interleaving
in [11]) each block is stored on a separate disk. The blocks are typically as-
signed to the disks in a round robin manner, When the proxy retrieves a block
from its disk array it reads the entire block from one disk. Therefore, CGS has
less overhead than FGS (since the proxy has to access D disks to retrieve one
block with FGS). The drawback of CGS, however, is its large interactive delay,
which is due to the large scheduling delay for disk accesses in disk arrays with
CGS [7,16,22]. The large scheduling delay with CGS severely limits the number
of streams that a disk array with CGS can support when a tight interactive
delay constraint is imposed. In fact, it is shown in [22] that given a tight in-
teractive delay constraint of 1 s CGS typically supports fewer streams than
FGS. We are interested in continuous media streaming with a high degree of
interactivity and focus therefore on FGS in this paper.

We now proceed to develop a model for streaming from a disk array with
FGS placement. For that purpose we adapt the disk model (Section 3.1) and
stream model (Section 3.2) for localized placement. First, we consider the disk
model. Suppose that the proxy’s disk array consists of D disks. Suppose that
the proxy is servicing J streams. Consider one of the D disks. The disk will
transfer J stripes in one round. With J disk accesses the disk overhead incurred
in one round is

disk overhead = I o + Jlor.

With a derivation that parallels the development of the disk model for localized
placement in Section 3.1 we obtain for the disk bandwidth with FGS

We now adapt the stream model of Section 3.2 to FGS. Consider again one of
the D disks. Let X¥65(j) be the random variable denoting the amount of data
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(i.e., the size of the stripe in bits) retrieved for stream j, j =1,...,J, in a given
round. Recall that the stripes are obtained by dividing each block of a video
object into D equal-sized segments. With our stream model the probability
mass function of XF95(j) can thus be directly obtained from the block size trace
of the cached video object:

P(XFOS(j) % 1 (x’"(] 1).

The total amount of data retrieved from the disk in a given round is

YFGs _ XJ: XFOS(j),
=1

and the aggregate amount of data retrieved from the entire disk array is
Y68 = DXTSS 1t is now straightforward to compute the loss probabilities Pisk
and P2 using the Large Deviation approximation.

We finally consider group striping. With group striping the video objects are
striped over W <D disks. We refer to W as the striping width. Localized
placement (W = 1) and full striping (W = D) are special cases of group strip-
ing. With group striping the proxy’s disk array is typically segmented into
striping groups, which consist of W disks each. Each cached video object is
striped within a striping group. With FGS each block of a video object is
segmented into W equal-sized stripes and each disk in the striping group stores
one of the block’s stripes. The disk model and stream model for streaming from
a proxy with group striping are straightforward extensions of the models for
full striping.

4. Replication and striping of video objects

In this section we study the impact of the placement of video objects in
the proxy’s disk array on the proxy’s performance. We show that replication
and striping of popular objects in the proxy significantly improve the hit
rate and throughput of the proxy as well as the user-perceived media
quality.

Throughout our performance study we assume that the requests for con-
tinuous media objects follow the Zipf distribution [38]. Specifically, if there
are M objects, with object 1 being the most popular and object M being the
least popular, then the probability that the mth most popular object is re-
quested is

w=K/m, m=1,....M,
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where

1
K= i .
14+ 1/20+ -+ 1/M¢

The Zipf distribution, which is characterized by the parameter { > 0, corre-
sponds to a highly localized request pattern. It has been observed that the
requests for movies in video rental stores and Video on Demand systems follow
a Zipf distribution with { around one [5]. Furthermore, studies of web caches
have shown that requests for images and HTML documents are well described
by a Zipf distribution with a { of roughly one [3]. We expect therefore that
requests for on-line continuous media objects will also follow a Zipf distri-
bution.

For the numerical investigation in this paper we use traces of MPEG en-
coded video objects. We obtained seven MPEG-1 traces, which give the
number of bits in each encoded video frame, from the public domain [10,15,27].
The seven video traces were used to create 10 pseudo traces each 40,000 frames
long. The statistics of the resulting traces are summarized in Table 2. The bean,
bond, lambs, soccer, and terminator traces were created by multiplying the
frame sizes of the video traces from [27] by a constant to bring their average bit
rates to 2 Mbps. The oz trace was created by taking the first 40,000 frames of
the MPEG encoding from [15] and multiplying the frame sizes by a constant to
raise the average bit rate to 2 Mbps. Finally, the four star wars traces were
obtained by dividing the MPEG encoding from [10] into four segments of
40,000 frames each and then raising the average bit rate of the segments to 2
Mbps. Although the 10 pseudo traces are not traces of actual videos objects, we
believe that they reflect the characteristics of MPEG-2 encoded video objects
(highly bursty, long-range scene dependence, average rate about 2 Mbps). In

Table 2
Trace statistics
Frames

Trace Peak (Mbit/s) Peak/mean Std. Dev.
bean 24.9 13.0 2.25
bond 19.3 10.1 2.03
lambs 35.2 18.3 2.94
0z 16.1 8.4 2.39
soccer 13.2 6.9 1.84
star wars 1 20.9 10.9 2.35
star wars 2 25.3 13.2 2.25
star wars 3 23.0 12.0 2.22
star wars 4 16.2 8.4 2.05

terminator 14.0 7.3 1.79




16 M. Reisslein et al. | Information Sciences 140 (2002) 3-31

summary, we have 10 VBR encoded video objects with N =40,000 frames and
a frame rate of F' = 24 frames/s.

In our performance evaluation we focus on the impact of the object
placement and caching strategies in the proxy’s disk array on the proxy per-
formance. Specifically, we investigate the object placement and caching strat-
egies that utilize the storage capacity and disk bandwidth of the proxy’s disk
array most efficiently. To highlight the impact of the object placement and
caching strategies we do not include the streaming over the local access net-
work in our study, that is, we focus on the admission control condition
Pdisk e, We refer the interested reader to [6,13,21,30] for studies of continuous
media streaming over local access networks.

To motivate the replication and striping of video objects in the proxy’s disk
array, we first consider a very simple caching scenario. Suppose that the 10
video objects from Table 2 are cached in the proxy’s disk array. Furthermore,
suppose, that each video object is placed on its own disk, that is, a localized
placement strategy with one video object per disk is employed. We use the disk
model and streaming model of Section 3 to evaluate this simple caching sce-
nario. We impose the statistical QoS requirement that the long run average
fraction of video information (bits) lost due to the limited disk bandwidth be
less than 107°, i.e. Pdsk < 107°. For each video object we use the large deviation
approximation (7) to calculate the maximum number of simultaneous streams
that can be supported by a single disk. The results are reported in Table 3. The
table also gives the maximum number of simultaneous streams that can be
supported when peak rate allocation is used. The video objects have an average
rate of 2 Mbps, thus the stability limit is 19 streams. We observe from the table
that the statistical admission control criterion allows for significantly more
streams than peak rate allocation. This substantial multiplexing gain comes at
the expense of small loss probabilities of the order of 107°. These miniscule
losses, however, can be effectively hidden by error concealment techniques and
will therefore not be noticed by the viewers. We also observe from Table 3 that

Table 3

Number of streams that can be supported by a single disk
Trace Stat. Mux. Peak allocation
bean 12 2
bond 15 3
lambs 11 1
0z 14 3
soccer 15 4
star wars 1 14 2
star wars 2 14 2
star wars 3 14 2
star wars 4 14 3
terminator 15 4
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the number of simultaneous streams supported by a disk depends on the
burstiness of the stored video object. The disk with the lambs video object,
which has the largest peak-to-mean ratio, supports the smallest number of
simultaneous streams. On the other hand, the disks storing the soccer and
terminator video objects, which have the smallest peak-to-mean ratio, support
the most streams.

Next, we study the total number of streams that the proxy can typically
support, when the requests for the 10 video objects are distributed according to
a Zipf distribution with { = 1. (We still assume localized placement with one
video object per disk, that is, there is one disk with bean, one disk with bond,
and so on.) For this illustrative example we assume that the popularity of the
video objects in Table 2 decreases in alphabetical order, that is, bean is the most
popular object (requested with probability ¢; = 0.341) and terminator is the
least popular object (requested with the probability ¢o = 0.034). We deter-
minate the typical number of streams, that the proxy can simultaneously
support with the following procedure. For a given target number of streams S
we generate S requests from the Zipf distribution. We then determine the
number of requests that can be supported by the 10 disks using the results from
Table 3. We repeat the experiment 1000 times, creating 1000 - S requests. If
95% of these requests can be supported, then we increment S and repeat the
entire procedure. The procedure continues until the 95% criterion is violated.
We find with this procedure that the proxy can typically support 39 simulta-
neous streams. This, however, is only a small fraction of the disk array’s ca-
pacity of 138 simultaneous streams (found by adding up the ‘“Stat. Mux”
column of Table 3).

The reason for this is twofold. First, due to the limited disk bandwidth the
proxy cannot satisfy many of the requests for the most popular objects. Sec-
ondly, much of the disk bandwidth of the disks housing the less popular objects
is underutilized. This phenomenon is commonly referred to as hot-spot prob-
lem. The hot-spot problem severely affects the proxy’s performance. The proxy
either has to reject many requests for the most popular objects (and the clients
have to obtain the objects directly from the origin server) or it has to com-
promise the stream quality by admitting more streams than the QoS criterion
Pk <1076 allows. Both of these options, however, are highly undesirable, as
they increase the load on the wide area network and reduce the media quality
and level of interactivity offered to the clients. We are thus motivated to study
strategies that overcome the hot-spot problem by utilizing the proxy’s storage
capacity and disk bandwidth more efficiently. Specifically, we study two
strategies:

o Object replication: The proxy stores more than one copy of the popular video
objects. The goal is to overcome the hot-spot problem by roughly matching
the replication distribution (i.e., the distribution of the number of copies of
the objects) to the request distribution.
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o Striping placement: The video objects are striped over a subset of the disks in
the proxy’s disk array. This allows the proxy to use the aggregate disk band-
width of the entire subset to stream the video objects. If the video objects are
striped over the entire disk array (full striping) then the hot-spot problem
vanishes and all request distributions can be equally accommodated.
Recall that streaming from a proxy with striping placement has been dis-

cussed in Section 3.3.

We now proceed to discuss object replication in detail. To simplify the
discussion we initially assume localized placement. (We shall later study object
replication in conjunction with striping.) To make the idea of object replica-
tion a little more precise, let D denote the number of disks in the proxy’s disk
array. Let M denote the number of distinct objects in the proxy’s cache. Let
C,, m=1,...,M, denote the number of copies of object m in the cache. For
simplicity, we initially assume that each disk stores exactly one video object,
thus Zile C,, = D. Now suppose that the request pattern for the M object has
a known distribution (perhaps a Zipf distribution with known parameter ().
To make the replication distribution approximately equal to the request
distribution we replicate the objects according to the following replication
algorithm:

Algorithm 1 (Non-uniform replication algorithm).

Co=|quD],m=1,..., M.

IfC,=0,set C, = 1.

Calculate C = Cy + - - - + Cy,.

If C > D, decrement C,, for the least popular object with C,, > 1, then for
the next least popular object with C,, > 1, and so on, until C = D.

5. If C < D, increment C,, for the most popular object, then for the next most
popular object, and so on, until C = D.

el .

This concludes our discussion of object replication for localized placement.
The concept extends to group striping with striping width W >1 in a
straightforward manner. With group striping the video objects are replicated
on distinct striping groups.

We have conducted a numerical study of object replication and striping
placement. In the numerical study we consider a proxy with a disk array
consisting of D = 100 disks. We use the M = 10 video objects from Table 2. In
the numerical study the requests for the video objects follow a Zipf distribution
with { = 1. We use the replication algorithm (see Algorithm 1) to match the
number of copies of the video objects to the request distribution. We then use
the 95% criterion to determine the number of simultaneous streams that the
proxy can typically support. The results are reported in Table 4 for different
striping widths W.
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Table 4
Number of simultaneous streams that the proxy can typically support for different replication
strategies and striping widths

w Replication strategy
Uniform Request Request + bw
1 390 1274 1303
2 622 1044 1045
5 562 633 632
10 380 380 380

The table also gives the number of simultaneous streams that can typically
be supported when the video objects are uniformly replicated, that is, there are
D/M = 10 copies of each video object in the disk array.

Two points are especially noteworthy. First, we observe that replicating
objects according to the clients’ request pattern significantly increases the
number of streams that the proxy can typically support. For localized place-
ment (W = 1) the streaming capacity of the proxy is increased roughly three-
fold by taking the request pattern into account. The second noteworthy
observation is that for uniform replication the streaming capacity increases as
the striping width increases from one to two. This is because striping over two
disks alleviates the hot-spot problem and thus allows the proxy to better ac-
commodate the clients’ requests. As the striping width is increased further,
however, the increased seek and rotational overhead of striping becomes the
dominant effect, reducing the streaming capacity of the proxy. For the proxy
with object replication according to the request pattern, localized placement
(W =1) gives the largest streaming capacity. This is because localized place-
ment minimizes the disk overhead while object replication according to the
request pattern overcomes the hot-spot problem.

Table 4 also gives the number of simultaneous streams that the proxy can
typically support when the object replication takes the video objects’ popu-
larity as well as bandwidth demand into account. This approach is motivated
by the results from Table 3, which indicate that disks housing relatively bursty
video objects can support relatively fewer simultaneous streams. To accom-
modate a given request pattern the proxy should therefore house more copies
of objects that consume relatively more disk bandwidth. To make this idea a
little more precise let b,,, m =1,..., M, denote the maximum number of si-
multaneous streams of object m that can be supported by a single disk. (For the
video objects used in the numerical study the b,,’s are given in Table 3.) To take
an object’s bandwidth demand into account we set

1 M
Cm = mD T a7 b
Dy 37 2P
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in Step 1 of Algorithm 1. The factor (1/5,,M) Z?il b, is larger (smaller) than
one for video objects that require relatively more (less) bandwidth. We see from
Table 4 that taking the objects’ bandwidth demand into consideration increases
the proxy performance slightly for localized placement (W = 1). For striping
placement this replication strategy does not improve the proxy performance.
We next study the robustness of the replication and striping strategies of
Table 4 with respect to changes in the request pattern. For this purpose we vary
the parameter of the Zipf distribution from which the requests are generated.
Throughout this experiment the video objects are replicated according to a Zipf
distribution with fixed parameter { = 1 (that is, throughout we use the object
replication used in the previous experiment). In other words, the request dis-
tribution varies while the replication distribution is held fixed. Fig. 2 shows the
typical number of simultaneous streams that the proxy can support as a
function of the Zipf parameter of the request distribution. The figure gives
plots for uniform replication and replication according to Zipf distribution
with { = 1 for localized placement and striping over two disks. We see from the
figure that uniform object replication gives good performance only when the
client request pattern is fairly uniform, that is, when the Zipf coefficient of the
request pattern is small. For the skewed request distributions that are typical
for client request patterns, uniform replication even with striping gives poor
proxy performance. Striping over two disks with object replication according
to the Zipf distribution with { = 1 — which can be thought of as an estimate of
the client request pattern — is very robust to changes in the client request
pattern. This strategy can support close to 1050 streams over a wide range of
the Zipf coefficient of the actual request distribution. Striping placement with
object replication according to an estimate of the client request pattern thus

1400 . :
o—oUniform (W=1)
o oUniform (W=2)
1200+ w—xZipf, zeta=1 (W=1)
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Fig. 2. Robustness of replication strategies.
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performs well even when this estimate differs significantly from the actual re-
quest pattern. However, with a good estimate of the request pattern, localized
placement (W = 1) with object replication according the estimate outperforms
striping placement. In the studied example, where the estimate of the request
pattern is the Zipf distribution with { =1, localized placement with object
replication according to this estimate outperforms striping placement when the
Zipf parameter of the actual request pattern is between 0.6 and 1.4.

The localized placement strategy has the added advantage that it is very
simple and works well for heterogeneous disk arrays consisting of disks with
different performance characteristics. Furthermore, localized placement avoids
the availability problem of striping placement — if one disk fails then all video
files that are striped over this disk become unavailable to the clients. (With
localized placement a given disk stores parts of fewer video objects therefore
disk failure has less impact on availability.) The availability problem of striping
can be mitigated (at the expense of added complexity) through mirroring of
video blocks or storing of parity information of the video blocks; see for in-
stance [9] and references therein. Because of its simplicity and potential for
improved performance we focus on localized placement (# = 1) in the next
section on caching strategies, however, the studied caching strategies apply
equally well to striping placement.

5. Caching strategies

In the previous section, which served to motivate object replication and
striping in the proxy, we assumed that (i) the requests for video objects follow a
known distribution, and (ii) all available objects are cached in the proxy. In this
section we consider a more realistic scenario, where (i) the client request pat-
tern is unknown, and (ii) only a subset of the available objects can be cached in
the proxy. We propose and evaluate caching and replacement policies that
either implicitly or explicitly track the client request pattern. The caching policy
determines which object (and how many copies thereof) to cache while the
replacement policy determines which objects to evict from the cache to free up
storage space for new objects.

5.1. Implicit tracking

With implicit tracking the caching policy is invoked whenever the proxy
cannot satisfy a client’s streaming request. This is the case when either (1) the
requested object is not cached, or (2) the requested object is cached but the
additional stream cannot be supported by the cached copy without violating
the QoS requirement Pk <e. The basic caching policy is to always try to
cache the requested object in case (1). In case (2) we distinguish two policies:
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caching with object replication and caching without object replication. Caching
with object replication attempts to cache an additional copy of the requested
object (which is generated internally from the already cached copy). Caching
without object replication, on the other hand, leaves the cache contents un-
changed and the requested object is streamed from the origin server directly to
the client.

If there is not enough free disk space to store the new object (or additional
copy when caching with replication is employed) we invoke a replacement
policy. We emphasize at this juncture that our focus is on the impact of the
caching policy on the proxy performance. The studied caching policies (i.e.,
caching with object replication and caching without object replication) may be
combined with any replacement policy. For illustration we consider the simple
and well-known LRU and LFU replacement policies. (We note that a wide
variety of replacement policies has been proposed, however, LRU continues to
be the very popular policy due to its simplicity.) With LRU replacement we
first check whether we can remove one copy of the object that was requested
least recently without interrupting ongoing streams. We verify whether the
ongoing streams (if any) of the least recently requested object can be supported
by the remaining copies (if any). If so, we remove one copy of that object.
Otherwise, we move on to the next to least recently requested object and start
over. This replacement algorithm terminates when we have freed up enough
space to cache the new object or we have considered all cached objects. In the
latter case the attempt to cache the new object fails and the object is streamed
from the origin server directly to the client.

With LFU replacement a request counter is maintained for every object in
the cache. When the replacement policy is invoked we consider first the object
with the smallest request counter value, then the object with the next to
smallest counter value, and so on.

We have conducted a simulation study of these caching strategies. For the
simulation study we generate 1000 video objects from the 10 pseudo traces
from Table 2 in the following manner. For each of the 1000 video objects we
randomly select one of the 10 pseudo traces and a random average rate be-
tween 1.5 and 2.5 Mbps. For each video object we furthermore draw a random
starting phase into the selected pseudo trace and a random lifetime from an
exponential distribution with mean L video frames. In the simulation client
requests arrive according to a Poisson process. For each client request one of
the 1000 video objects is drawn according to the Zipf distribution with pa-
rameter {. (The request arrival rate is set to 0.95D - b, /L, where D is the
number of disks in the proxy and b,, is the average number of streams that a
single disk can support subject to Pk < 107¢; for simplicity we assume that
each disk stores at most one video object.)

Fig. 3 shows the hit rate as a function of the number of disks in the proxy for
caching without object replication and caching with object replication both
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Fig. 3. Impact of proxy server resources.

with LRU replacement and LFU replacement (ignore the “Explicit tracking”
curves for now). The hit rate is defined as the ratio of the number of requests
served out of the cache (without contacting the origin server) to the total
number of client requests. (The results for the byte hit rate are similar.) The
Zipf parameter of the client request distribution is set to { = 0.75 or { = 1.0 for
this experiment. The average length of the video objects is set to L = 5000
frames (corresponding to 3.5 min) or L = 20,000 frames, (corresponding to 14
min). We observe from the plots that caching with object replication outper-
forms caching without replication by a significant margin for { = 1.0; for
{ = 0.75 the margin is less pronounced. Interestingly, we see from Fig. 3 that
the replacement policy (LRU or LFU) has no impact on the proxy perfor-
mance.

In Fig. 4 we plot the hit rate as a function of the average length of the video
objects (which we assume is identical to the stream lifetimes, i.e., clients receive
the entire object). We consider proxies with D = 50 disks and with D = 100
disks and Zipf request patterns with { = 0.75 and { = 1.0 in this experiment.
The figure reveals that for short-lived streams (<2000 video frames,
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Fig. 4. Impact of average object length.

corresponding to roughly 1.3 min) LFU replacement outperforms LRU re-
placement. We also see that the caching policy (caching with or without object
replication) has no impact on the proxy performance. As the streams become
longer lived, however, the replacement policy loses its impact on the proxy
performance and the caching policy becomes dominant (especially for the more
localized access pattern, { = 1.0, and the large proxy, D = 100). The reason for
this is that, roughly speaking, it becomes harder to find an object copy that can
be removed without interrupting ongoing streams when the streams become
longer lived. As a result both replacement policies tend to pick the same object
for removal. The main conclusion from this experiment is that object repli-
cation is not needed for caching of text and image objects (which can be
thought of as having a lifetime of zero). However, for caching of continuous
media objects, replication is crucial for good proxy performance, especially
when a large proxy serves a client community with a highly localized access
pattern.

We next investigate how well the caching policies adapt to different client
request patterns. In Fig. 5 we plot the hit rate as a function of the Zipf
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Fig. 5. Impact of object request distribution.

parameter of the request distribution. In this experiment we consider proxies
with D = 50 disks and D = 100 disks and the average object length is set to
L = 5000 frames or L = 20,000 frames. The plots clearly show that caching
with object replication outperforms caching without object replication for Zipf
request parameters larger than 0.65.

Note that the four discussed and evaluated caching strategies (caching with
and without object replication, both with LRU and LFU replacement) im-
plicitly track the client request pattern. Popular objects — once cached — tend to
stay in the cache since it is very likely that their removal would interrupt on-
going streams. In addition, caching with object replication is able to adapt to
highly localized request patterns as it tends to cache more copies of objects that
are relatively more popular. A shortcoming of the implicit tracking schemes is
that they do not directly take the objects’ popularities into consideration. We
observed in our simulations that quite frequently, moderately popular objects
fill up the cache and prevent very popular objects from being cached. We are
therefore motivated to explicitly take the objects’ popularities into consider-
ation.
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5.2. Explicit tracking

Our explicit tracking approach uses an exponential weighted moving aver-
age to estimate the client request pattern. Based on the estimated request
pattern we determine which objects (and how many copies thereof) to cache in
the proxy.

The estimation procedure works as follows. The proxy maintains estimates
7 of the request rate (requests per time slot of length A, we set A =1 min in
our numerical work) for all objects m, m = 1,..., M, requested by its client
community. The estimates 7,, are updated at the end of every time slot. Let req,
denote the number of requests for object m in the just expired time slot. The
estimates 7, are updated according to

f'm — (1 - OCm)’j'm + mereqma

where o, is an object specific dampening factor. We set o, such that
(1 —o,)™ =1/e, where 1, is the “aging time” (in multiples of the slot
length) of object m. We propose to set 7,, to a small value for objects that
“age” relatively quickly, such as news clips. On the other hand, t,, should be
set to a large value for objects that age slowly, such as on-line lectures,
operating instructions or video clips showcasing products in on-line shopping
systems. In our numerical work we set 7,, = 10,000 min (=7 days) for all
objects.

Based on the estimated request rates 7#,, m =1,..., M, we calculate the
popularity estimates g,, as

P+ M
Z]lvil Fi .
We use the popularity estimates g,, to decide which objects (and how many

copies thereof) to cache. Our caching policy strives to match the distribution of
the number of copies of the cached objects to the estimated popularities.

qn =

Formally, let C,, m=1,...,M, denote the number of copies of object m re-
quired to match the estimated popularities ¢,. Furthermore, let
C,, m=1,...,M, denote the number of copies of object m that are currently

in the cache. For reasons that will become clear shortly, we distinguish between
the number of copies C,, in the cache and the number of copies C,, suggested by
the popularity estimates. The C,’s are matched to the g,,’s with the following
replication algorithm:

Algorithm 2 (Replication algorithm).

Lo Gy =P M/ Py m=1,.. M.
2. Cp=19,D),m=1,....M.
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3. Calpulate C=C +- ot Cuy.
4. If C < D, increment C,, for the most popular object, then for the next most
popular object, and so on, until C = D.

The storage overhead of this popularity estimation procedure is O(M). This
is because the estimate 7, the counter req,,, the popularity estimate d,,, and the
object replication have to be maintained for every object m, m=1,... M,
requested by the proxy’s client community. The time complexity of the repli-
cation algorithm is approximately O(M). To see this, note that M iterations are
required to compute the popularity estimates 4, and matching replication C,,.
At most D iterations of Step 4 are required until C = D is satisfied, however,
typically D < M. For simplicity we assume in the replication algorithm that
each disk stores exactly one video object. Note that this replication algorithm
differs from the replication algorithm of Section 4 in that it caches only objects
with g, = 1/D. Based on the C,’s obtained with this replication algorithm we
propose a caching policy for explicit tracking.

Similar to the implicit strategies discussed in the previous section, the
caching policy for explicit tracking is invoked whenever the proxy cannot
satisfy a client’s streaming request. This is the case when either (1) the re-
quested object j* is not cached (i.e., C; = 0), or (2) the requested object j* is
cached but the additional stream cannot be supported by the cached copies
C; = 1 without violating the QoS requirement Pk <e. Our caching policy
with explicit tracking works as follows. First, we execute the replication al-
gorithm to determine the current popularity estimates ¢,, and the matching
object replication C,,, m=1,..., M. If CA’/-* < Cj we do not attempt to cache
object j* and it is streamed from the origin server directly to the client. Oth-
erwise, i.e., if C‘, > C;, we attempt to store a copy of object j* in the disk
array. In case (1) this is the first copy of object j*, which is obtained via the
wide area network from the appropriate origin server. In case (2) this is an
additional copy of object j*, which is generated internally from the other al-
ready cached copy. If there is enough empty disk space in the proxy we place
the new/additional copy of object j* there, otherwise we invoke the replace-
ment policy.

Roughly speaking, the replacement policy tries to remove one copy of an
object that has more copies in the cache than are required to match its pop-
ularity. Formally, let 2 = {;: C; > C‘j, 1<j<M, j#j}. If Z is non-empty
we pick some j € Z and check whether we can remove one copy of object j
without interrupting ongoing streams. This amounts to verifying whether the
ongoing object-j streams (if any) can be supported by the remaining C; — 1
copies. If so, we remove one copy of object j and the replacement algorithm
terminates if enough disk space has been freed up. Otherwise, we remove object
Jj from consideration by setting # — % — {j} and start over. The replacement
algorithm terminates when we have freed up enough space or end up with an
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empty Z. In the latter case the attempt to cache object j* fails and object j* is
streamed from the origin server directly to the client.

The results of our simulation study of the explicit tracking scheme are given
in Figs. 3,4,5. The plots show that the explicit tracking scheme consistently
outperforms the implicit tracking schemes with LRU or LFU replacement.
We observe from Fig. 4 that the gap in performance widens as the average
object length increases; explicit tracking achieves roughly 18% higher hit rates
than the implicit tracking schemes when the average object length exceeds
2000 video frames. Also, we observe from Fig. 5 that explicit tracking out-
performs the other schemes for all requests patterns. In summary, we find that
explicit tracking is a very attractive caching strategy for continuous media
objects.

Finally, we investigate the impact of the proposed caching strategies on the
utilization of the disk array. We note, however, that the disk array utilization is
only an auxiliary performance metric of a caching strategy; the hit rate is the
decisive performance metric for a caching strategy. In our utilization analysis
we focus on the utilization of the disk array bandwidth. We define the cache
utilization as the long run ratio of the sum of the average rates of the streams
supported by the proxy to the proxy’s total disk bandwidth (obtained by
summing the disk bandwidths given by Eq. (1)). Fig. 6 gives the cache utili-
zation as a function of the Zipf parameter of the request pattern. We consider a
proxy with D = 50 disks and movies with an average length of L = 20,000
frames in this experiment. The plots indicate that caching with object repli-
cation achieves higher cache utilizations than caching without object replica-
tion; explicit tracking gives even higher utilizations. The cache utilization
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results strengthen our conclusion of the importance of object replication and
explicit popularity tracking.

6. Conclusion

We have studied caching strategies for continuous media objects in this
paper. The basis for our study is our model for VBR video streaming that
provides statistical QoS. We find that for caching of continuous media objects,
conventional caching without object replication achieves only small hit rates.
We have proposed novel caching strategies that either implicitly or explicitly
track the client request pattern. Our numerical evaluation indicates that these
novel caching strategies achieve significantly higher hit rates for continuous
media objects. In our ongoing research we study refinements of the explicit
tracking scheme, such as a refined replacement algorithm, which tries to re-
move one copy of objects with more than one cached copy before considering
objects with only one cached copy.

References

[1] Streaming media caching white paper, Technical Report, Inktomi Corporation, 1999, http://
www.inktomi.com/products/traffic/streaming.html.

[2] Y. Birk, Random RAIDs with selective exploitation of redundancy for high performance video
servers, in: Proceedings of NOSSDAV’97, St. Louis, Missouri, May 1997.

[3] L. Breslau, P. Cao, L. Fan, G. Phillips, S. Shenker, Web caching and Zipf-like distributions:

evidence and implications, in: Proceedings of IEEE INFOCOM, New York, NY, March 1999,

pp. 126-134.

1. Dalgic, F.A. Tobagi, Characterization of quality and traffic for various video encoding

schemes and various encoder control schemes, Technical Report CSL-TR-96-701, Stanford

University, Departments of Electrical Engineering and Computer Science, August 1996.

[5] A. Dan, D. Sitaram, P. Shahabuddin, Dynamic batching policies for an on-demand video

server, Multimedia Systems 4 (3) (1996) 112-121.

W. Feng, J. Rexford, A comparison of bandwidth smoothing techniques for the transmission

of prerecorded compressed video, in: Proceedings of IEEE INFOCOM, Kobe, Japan, 1997,

pp. 58-67.

[7] J. Gafsi, E.W. Biersack, Data striping and reliability aspects in distributed video servers,
Cluster Computing: Networks, Software Tools, and Applications, 1998, Available at http:/
www.eurecom.fr/~erbi.

[8] J. Gafsi, E.W. Biersack, Data striping and reliability aspects in distributed video servers,
Cluster Computing: Networks, Software Tools and Applications, February 1999.

[9] J. Gafsi, E.W. Biersack, Performance and reliability study for distributed video servers:
mirroring or parity, in: Proceedings of IEEE International Conference on Multimedia
Computing and Systems, June 1999, pp. 11 628-634.

[10] M.W. Garret, Contributions toward real-time services on packet networks, Ph.D. Thesis,
Columbia University, May 1993, ftp address and directory of the used video trace:
bellcore.com/pub/vbr.video.trace/.

[4

[l

[6

—



30 M. Reisslein et al. | Information Sciences 140 (2002) 3-31

[11] DJ. Gemmel, H.M. Vin, D.D. Kandalur, P.V. Rangan, L.A. Rowe, Multimedia storage
servers: a tutorial, IEEE MultiMedia 28 (5) (1995) 40-49.

[12] G.A. Gibson, J.S. Vitter, J. Wilkes, Storage and 1/O issues in large-scale computing, in: ACM
Workshop on Strategic Directions in Computing Research, ACM Computing Surveys, 1996,
http://www.medg.lcs.mit.edu/doyle/sdcr.

[13] M. Grossglauser, S. Keshav, D. Tse, RCBR: a simple and efficient service for multiple time-
scale traffic, in: Proceedings of ACM SIGCOMM, August 1995, pp. 219-230.

[14] E. Knightly, N. Shroff, Admission control for statistical QoS: theory and practice, IEEE
Network 13 (2) (1999) 20-29.

[15] M. Krunz, R. Sass, H. Hughes, Statistical characteristics and multiplexing of MPEG streams,
in: Proceedings of IEEE INFOCOM, April 1995, pp. 455-462.

[16] B. Ozden, R. Rastogi, A. Silberschatz, Disk striping in video server environments, in:
Proceedings of IEEE Conference on Multimedia Systems, Hiroshima, Japan, June 1996, pp.
580-589.

[17] J. Ni, T. Yang, D.H.K. Tsang, Source modelling queueing analysis and bandwidth allocation
for VBR MPEG-2 video traffic in ATM networks, IEE Proceedings on Communications 143
(4) (1996) 197-205.

[18] B. Ozden, R. Rastogi, A. Silberschatz, On the design of a low-cost video-on-demand storage
system, Multimedia Systems 4 (1) (1996) 40-54.

[19] A.L.N. Reddy, J.C. Wyllie, I/O issues in a multimedia system, Computer 27 (3) (1994) 69-74.

[20] M. Reisslein, K.W. Ross, Call admission for prerecorded sources with packet loss, IEEE
Journal on Selected Areas in Communications 15 (6) (1997) 1167-1180.

[21] M. Reisslein, K.W. Ross, High-performance prefetching protocols for VBR prerecorded
video, IEEE Network 12 (6) (1998) 46-55.

[22] M. Reisslein, K.W. Ross, S. Shrestha, Striping for interactive video: is it worth it?, in:
Proceedings of IEEE International Conference on Multimedia Computing and Systems,
Florence, Italy, June 1999, pp. 11 635-640.

[23] R. Rejaie, M. Handley, D. Estrin, Quality adaptation for congestion controlled video playback
over the Internet, in: Proceedings of ACM SIGCOMM, Cambridge, MA, September 1999.

[24] R. Rejaie, M. Handley, D. Estrin, RAP: an end-to-end rate-based congestion control
mechanism for realtime streams in the internet, in: Proceedings of IEEE INFOCOM, New
York, NY, March 1999, pp. 1337-1345.

[25] R. Rejaie, H. Yu, M. Handley, D. Estrin, Multimedia proxy caching mechanism for quality
adaptive streaming applications in the Internet, in: Proceedings of IEEE INFOCOM 2000, Tel
Aviv, Israel, March 2000.

[26] J. Roberts, U. Mocci, J. Virtamo (Eds.), Broadband Network Traffic: Performance Evaluation
and Design of Broadband Multiservice Networks, Final Report of Action COST 242, Lecture
Notes in Computer Science, vol. 1155, Springer, Berlin, 1996.

[27] O. Rose, Statistical properties of MPEG video traffic and their impact on traffic modelling in
ATM systems, Technical Report 101, University of Wuerzburg, Institute of Computer Science,
Wuerzburg, Germany, February 1995.

[28] S. Sahu, P. Shenoy, D. Towsley, Design considerations for integrated proxy servers, in:
Proceedings of International Workshop on Network and Operating System Support for
Digital Audio and Video, Basking Ridge, NJ, June 1999.

[29] S. Sahu, Z.L. Zhang, J. Kurose, D. Towsley, On the efficient retrieval of VBR video in a
multimedia server, in: Proceedings of IEEE International Conference on Multimedia
Computing and Systems, Ottawa, Canada, June 1997.

[30] J. Salehi, Z. Zhang, J. Kurose, D. Towsley, Supporting stored video: reducing rate variability
and end-to-end resource requirements through optimal smoothing, IEEE/ACM Transactions
on Networking 6 (4) (1998) 397-410.



M. Reisslein et al. | Information Sciences 140 (2002) 3-31 31

[31] H. Schulzrinne, A. Rao, R. Lanphier, Real time streaming protocol (RTSP), Request for
Comments (Proposed Standard) 2326, Internet Engineering Task Force, April 1998.

[32] S. Sen, J. Rexford, D. Towsley, Proxy prefix caching for multimedia streams, in: Proceedings
of IEEE INFOCOM, New York, NY, March 1999, pp. 1310-1319.

[33] P.J. Shenoy, M. Vin, Efficient striping techniques for multimedia file servers, in: Proceedings of
NOSSDAV’97, May 1997, pp. 25-36.

[34] Seagate Disk Detailed Specifications, Disk model medalist 13032, http://www.seagate.com/
cda/disk/mark/detail/0,1250,152,00.shtml, 1999.

[35] W.S. Tan, N. Duong, J. Princen, A comparison study of variable bit rate versus fixed bit rate
video transmission, in: Australian Broadband Switching and Services Symposium, 1991, pp.
134-141.

[36] R. Tewari, H.M. Vin, A. Dan, D. Sitaram, Resource-based caching for web servers, in:
Proceedings of SPIE/ACM Conference on Multimedia Computing and Networking, San Jose,
1998.

[37] Y. Wang, Z. Zhang, D. Du, D. Su, A network-conscious approach to end-to-end video
delivery over wide area networks using proxy servers, in: Proceedings of IEEE INFOCOM,
San Francisco, CA, April 1998, pp. 660-667.

[38] G.K. Zipf, Human Behavior and Principle of Least Effort: An Introduction to Human
Ecology, Addison-Wesley, Cambridge, MA, 1949.

Martin Reisslein is an Assistant Professor in the Department of Electrical Engineering at Arizona
State University, Tempe. He is affiliated with ASU’s Telecommunications Research Center. He
received the Dipl.-Ing. (FH) degree from the Fachhochschule Dieburg, Germany, in 1994, and the
M.S.E. degree from the University of Pennsylvania, Philadelphia, in 1996. Both in electrical en-
gineering. He received his Ph.D. in systems engineering from the University of Pennsylvania in
1998. During the academic year 1994-1995 he visited the University of Pennsylvania as a Fulbright
scholar. From July 1998 through October 2000 he was a scientist with the German National
Research Center for Information Technology (GMD FOKUS), Berlin. While in Berlin he was
teaching courses on performance evaluation and computer networking at the Technical University
Berlin. He has served on the Technical Program Committees of IEEE Infocom, IEEE Globecom,
and the IEEE International Symposium on Computer and Communications. He has organized
sessions at the IEEE Computer Communications Workshop (CCW). His research interests are in
the areas of Internet Quality of Service, wireless networking, and optical networking. He is par-
ticularly interested in traffic management for multimedia services with statistical Quality of Service
in the Internet and wireless communication systems.

Felix Hartanto received his BE and Ph.D. degrees in Electrical and Electronics Engineering from
the University of Canterbury, New Zealand. He is currently an Assistant Professor at the De-
partment of Information Engineering, The Chinese University of Hong Kong. Prior to that, he was
a research scientist with the German National Research Center for Information Technology (GMD
FOKUYS) in Berlin, Germany. His current research interests are web caching and policy-based
management.

Keith W. Ross received his Ph.D. from the University of Michigan in 1985 (Program in Computer,
Information and Control Engineering). He was a professor at the University of Pennsylvania from
1985 through 1997. At the University of Pennsylvania, his primary appointment was in the De-
partment of Systems Engineering and his secondary appointment was in the Wharton School. He
joined the Multimedia Communications Department at Institut Eurecom in January 1998, and
became department chairman in October 1998. In Fall 1999, while remaining a professor at Institut
Eurecom, he co-founded and became CEO of Wimba. He has published over 60 papers and written
two books. He has served on editorial boards of five major journals, and has served on the program
committees of major networking conferences, including Infocom and Sigcomm. He has supervised
more than 10 Ph.D. theses. His research and teaching interests include multimedia networking,
asynchronous teaching, Web caching, streaming audio and video, and traffic modeling. Along with
Jim Kurose, he is the co-author of “Computer Networking’: A Top-Down Approach Featuring
the Internet, Addison-Wesley, 2000.



