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Performance implications of very large service-time variancesq
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Abstract

Measurements of file sizes transported on the World-Wide-Web have led some researchers to propose describing them by
probability distributions with infinite variance. The M/G/1 queue often arises as a performance model for components of the
WWW, and the service times correspond to file sizes; the infinite variance of the file sizes becomes the variance of the service
times. In this paper the effects of very large service-time variances on some performance measures for the M/G/1 queue are
explored via numerical examples and analytic arguments.

The first main conclusion is that it is the form of the service-time distribution over a wide finite range that controls the
steady-state queueing performance, so distributions with very large finite variances can yield the same behavior as distributions
with infinite variances. The second main conclusion is that very large service-time variances cause the rate of approach to
steady-state performance to be so slow that steady-state performance measures are not likely to be of engineering interest.
A third conclusion is that a common device of using the probability that the work in an infinite queue exceeds the levelb to
approximate the probability that a finite buffer of sizeb overflows may be very inaccurate. The approximation works better
for the fat-tailed distributions studied than for the others.

The most important engineering implication of these results is that when service times have a very large variance (such as
file transfers on the WWW), performance criteria other than steady-state measures have to be used. ©2000 Elsevier Science
B.V. All rights reserved.
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1. Introduction

The purpose of this paper is to explore the effects of very large service-time variances on some per-
formance measures for the M/G/1 queue. The relevance of these results is that measurements on the
WWW indicate that file sizes and file transfer times follow a distribution with power-law tails and a very
large (some think infinite) variance [1,2]. When many subscribers share a network resource, a limiting
operation (that is described in Section 2) gives rise to an M/G/1 queueing model, where the service time

q An earlier version of this paper was presented at the Performance and Control of Network Systems II Conference, in:
Wai Sum Lai, Robert B. Cooper (Eds.), Vol. 3530, Boston, Mass., 2–4 November 1998.
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inherits the distribution of the file sizes. Consequently, the M/G/1 queue with a very large variance for
the service times may be appropriate for sizing network elements handling WWW traffic. The goal of
this paper is to discover which properties of distributions with power-law tails and large variances are
important for performance analysis.

The M/G/1 queue is often the first queueing model one encounters with some distribution in it other
than the exponential. Among the first results one learns is the Pollaczek–Khintchine formula for the
steady-state mean queue size, from which it follows that the variance of the service times has a first-order
effect on the mean delay. Moreover, themeandelay is infinite when thevarianceof the service times is
infinite, so service-time distributions with very large variances may have a profound effect on the delay
distribution. The empirical evidence that appropriate models for WWW resources should use service
times with very large variances suggested the following three questions to me.
• When the service times have power-law tails and a very large variance, does the steady-state queue-size

distribution (in the range of engineering interest) differ significantly from the same model with an
infinite variance for the service times?

• Does the queue-size distribution approach its steady-state value quickly enough for the latter to be
relevant for engineering decisions?

• Is the steady-stateP {buffer contents> b} for an M/G/1 queue with an infinite buffer a good approxi-
mation to the overflow probability for the same queue with a finite buffer of sizeb?

The rest of the paper is devoted to formulating these questions precisely, and using theoretical analyses
and numerical examples to answer them. For the first two questions, we examine how fat tails affect the
complementary distribution of the steady-state work-in-system and the convergence rate of the expected
queue length at timet , respectively. For those who cannot wait to learn the answers, they are no, no, and
sometimes.

The rest of this paper is organized as follows. Section 2 contains some background information, includ-
ing a heuristic derivation of the M/G/1 queueing model and some basic facts about fat-tailed distributions.
The next three sections explore the three questions above (in turn), and my conclusions are given in the
final section.

2. Background material

In this section, I explain how the M/G/1 queue with service-times having power-law tails arises from
WWW traffic with file sizes with power-law tails. Then some examples of fat-tailed distributions are
given and compared.

2.1. Derivation of the M/G/1 model

Consider a source that alternates between busy and idle phases. The sojourn times in the busy phases
are i.i.d. random variables, and so are the sojourn times in the idle state, and all of the sojourn times
are independent of one another. When the source is busy, it generates traffic at a constant rate,r say.
When the source is idle, it does not generate any traffic. LetF be the distribution function of an arbitrary
sojourn time in the idle state, and let its mean bem/λ, wherem is a scaling factor that will come
into play in a moment. LetY be the (random) length of an arbitrary sojourn time in a busy phase,
S = rY, andG be the distribution function ofS. ThenS is the amount of work (in units of say, bits,
or bytes, or cells, or packets) that arrive in an arbitrary busy phase. Let the mean and variance ofS be
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1/µ andσ 2, respectively. The mean time between starts of busy phases isE(Y ) + m/λ. In our context
where the arrivals are files, processing times typically are a linear scaling of the file sizes. Sincer can
be made unity with a suitable choice of dimensions for file sizes and processing times, we will take
r = 1.

Whenm is very large, this arrival process is approximately a process where packages of work having
distribution functionG arrive with spacings having distribution functionF ; as we will now show. With
the assumptions above, the packages of work have distribution functionG, the times between work arrival
epochs have distribution functionF ∗ G, where∗ denotes convolution, and the spacings between these
epochs are i.i.d. We want to show that when time is scaled by the factor 1/m, the distribution of the times
between work arrival epochs converges toF asm → ∞. First, letX be a generic sojourn time in the idle
state andXm = mX, with E(X) = 1/λ. Let F̃ andF̃m be the Laplace–Stieltjes transforms ofX andXm,
respectively. Then

F̃m(s) = E(e−sXm) = E(e−smX) = F̃ (ms). (1)

Now we want to stretch out the time between arrivals while keeping the amount of work brought by each
arrival unchanged. A way to envision this is to scale the interarrival times by a new (scaled) time variable
(denoted byτ ) that is related to the old (unscaled) time variable (denoted byt) via τ = t/m. In scaled
time, the distribution of the time between initiations of busy phases isF(τ)∗G(mτ), so the mean number
of initiations by timeτ (the renewal function,M(τ) say) is

M(τ) =
∞∑

k=1

[F(τ) ∗ G(mτ)]∗k,

where the superscript denotesk-fold convolution. Taking Laplace–Stieltjes transforms and using (1)
yields

M̃(s) = F̃ (s) G̃(s/m)

1 − F̃ (s) G̃(s/m)
→ F̃ (s)

1 − F̃ (s)
(m → ∞),

completing the demonstration.
Suppose we superposem statistically independent sources of the type described above, and steady-state

conditions prevail. The distribution of the busy phases are the same in all sources, but the distributions of
the idle phases need not be. The assumption above that the mean idle phase ism/λ implies that the sum
of the arrival rates isλ for everym. LetFjm the distribution of the idle phases of sourcej when there are
m sources. We require that for anyε > 0,

Fjm(t) ≤ ε, j = 1, 2, . . . , m

for all t > 0 whenm is sufficiently large. These assumptions allow one to invoke the Palm–Khintchine
Theorem [3] which states that whenm → ∞, the arrival epochs of the superposed process form a Poisson
process with rateλ, no matter what the forms ofFjm are. Transmission pipes, multiplexers and switching
devices are often modeled as a single server that works at a constant rate when work is available, and a
buffer to handle arrival spurts is frequently assumed to be present. If the traffic (i.e. the packages of work)
is processed by a single server working at unit rate, the queueing process is precisely an M/G/1 queue
whereG is the distribution function of the service times. Notice that the only requirement we need place
onG is that it be the distribution of a non-negative random variable.
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A detailed rigorous derivation of the M/G/1 model with integer-valued sojourn times is given in
Likhanov et al. [4]. Our result generalizes Theorem 1 of Jelenkovic and Lazar [5] who start with the
assumption that the idle phases are exponentially distributed. Related work is in Heath et al. [6] who
examine the effects of fat-tails in both the inter-arrival and service times on the queue lengths in an on/off
model. Investigations of the M/G/1 queue with fat-tailed service times go back at least as far as 1968,
when a paper by Harris [7] appeared.

We obtained the M/G/1 queue arrival process by keeping the arrival rate fixed as the number of sources
tends to infinity, scaling the idle phases and keeping the busy phases unscaled. In physical terms, each
source initiates file transfers at a lower rate as the number of sources increases and the file sizes remain
the same. Willinger et al. [8] use the same individual source model that we use. In obtaining their limit
result (asm → ∞) they keep the mean of the idle phases as is, and scale both the idle and busy phases.
Naturally, they obtain a different model for many sources. Among the differences is that the arrival rate
increases withm, and tends to infinity asm does. Under which conditions these models should be used
is an important question that will not be examined here.

2.2. Some power-law-tailed distributions

Let G be the distribution function of some random variable that lives on the non-negative portion of
the real line. The “tail” ofG is usually not defined rigorously, but its meaning seems intuitively clear and
the term is commonly used in technical discourse. I use the termbodyto describe the part ofG that is not
in the tail. LetGc(x) = 1 − G(x) for everyx ≥ 0; it is thecomplementarydistribution function (c.d.f.).
G is calledlong-tailedif [9]

lim
x→∞

Gc(x − y)

Gc(x)
= 1

for all real numbersy. Three examples of long-tailed distributions are the Pareto family, the lognormal
distribution and the Weibull family with shape parameter<1. The latter two have finite moments of all
orders, so the long-tailed property is not synonymous with infinite moments.

The Pareto family is defined by

Gc(x) =
(

r − 1

r

)r

x−r , x ≥ r − 1

r
.

The nth moment exists whenr > n. For largex, Gc(x) looks like const/xr , which is what is usually
meant by “having a fat tail”.G has apower-law tailif

Gc(x) ≈ x−rL(x) (x → ∞), r > 0,

whereL is a slowly varying function (which means thatL(xt)/L(x) → 1 asx → ∞ for anyt > 0) and
≈ means that the ratio of the left-side and the right-side goes to 1. In the general literature, distributions
with this property are calledregularly varying with index r.

The lognormal and Weibull distributions are difficult to use as the service-time distribution in an M/G/1
queue because neither has a closed-form Laplace transform. The Laplace transform of a Pareto distribution
is an incomplete gamma function, which is not easy to work with, but the main reason for not wanting to
use a Pareto distribution for service times is that lower bound and rate at which the tail probabilities decay
cannot be chosen independently, and this affects those moments that exist. Abate et al. [10] introduced the
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Pareto mixture of exponentials(PME) family to circumvent these difficulties. The two PME distributions
used in this paper are calledG2 andG3, and are defined by

Gc
2(x) = 1 − (1 + 2x)e−2x

2x2
, x > 0,

and

Gc
3(x) = 16[1− (1 + 3x/2 + 9x2/8)e−3x/2]

9x3
, x > 0.

Manifestly,

Gc
2(x) ≈ 1

2x2
and Gc

3(x) ≈ 16

9x3
(x → ∞),

so they are fat tailed. These distributions have mean 1. The variance ofG2 is infinite. The variance ofG3

is 5/3, and the third moment is infinite . The Laplace transforms contain only elementary functions.
Boxma and Cohen [11] extended the PME family. LetGbc be the distribution they specify in Eq. (1.7)

of their paper, with their parameterss andδ set equal to 1. The complementary distribution is

Gc
bc(x) = (2x + 1)exErfc(

√
x) − 2

√
x/π, (x > 0),

where

Erfc(x) = 2

π

∫ ∞

x

e−u2
du

is the complementary error function. This distribution function has mean 1, infinite variance, and the
Laplace transform is

G̃c
bc(s) = s

(1 + √
s)2

which contains only elementary functions. This distribution will be called BC for short. From an expansion
for Erfc, it can be shown that

Gc
bc(x) ≈ 1√

πx3
(x → ∞).

Abate and Whitt [12] show that BC is a beta mixture of exponentials.

2.3. Exponential damping

These power-law-tailed distributions will be compared to three distributions that do not have power-law
tails. The first two are exponentially damped versions ofGbc. Abate et al. [13] introduce the notion of
damping fat-tailed distributions by multiplying the c.d.f. by e−δx for some suitably chosenδ > 0; the
probability that is lost by this operation is placed at the origin, and a renormalization is done to preserve
the mean value. To be precise, letg̃ be the Laplace transform of a given density function with mean 1,
andd̃ be the Laplace transform of the damped density function, then

d̃(s) = g̃

(
s

mδ

+ δ

)
+ 1 − g̃(δ), (2)
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where

mδ = − d

ds
g̃(δ).

For BC,

g̃(s) = 1 + 2
√

s

(1 + √
s)2

and mδ = (1 + δ)−3.

I useδ = 10−8 andδ = 10−4 to damp BC. The former will be referred to asslight damping, and
latter asmoderate damping. With the former value, e−δx ≥ 0.9999 forx ≤ 10 000 this produces a
distribution that has an exponential tail (and a variance of 15 003.0) that is practically indistinguishable
from BC for x ≤ 10 000. If this distribution produces queueing results that are close to those produced
by BC, then the infinite variance of the latter is not a key property in the performance context. The tail
probabilities ofG2 decay more slowly than the tail probabilities of BC, andG2 has an infinite vari-
ance. Thus, if slightly damped BC induces larger queues (in the region of engineering interest) than
G2 does, then the asymptotic tail behavior (which determines if the variance is finite or infinite) is not
a critical feature of the service-time distribution. More discussion of exponential damping is given in
Section 3.3.

With moderate damping we obtain tail probabilities that are within 1% of the tail probabilities of
BC for x ≤ 100. The variance is 161.0, which is much smaller than the variance obtained with slight
damping, so it should produce different results than BC when probabilities that the service time exceeds
x (for x > 100) are important. The third distribution is a gamma with mean 1 and squared coefficient
of variation 5/3, which matches the first two moments ofG3. The power-law tail is an important fea-
ture of the service-time distribution if the gamma andG3 distributions produce very different queueing
behavior.

2.4. Some comparisons among these distributions

Here we compare the c.d.f.’s and variance–time curves of the six distributions introduced above.
Fig. 1 shows the c.d.f.’s, which were computed by numerical Laplace transform inversion using the

program EULER [14]. The tail probabilities are expressed as the probability that a random variableS

exceedst , whereS is to be thought of as the service time in an M/G/1 queue.
In Fig. 1 there is no discernible difference between BC and the slightly damped version for 10 000 mean

service-times, so the difference is not likely to matter when used in the queueing model. The moderately
damped version matches the original c.d.f. past 100 mean service-times, and is not far from the original
at 1000 mean service-times. The other distributions fall off much faster.

Let A(t) be the amount of work that has arrived by timet in an on–off source as described above,
with m = 1. Assume that steady-state conditions prevail. Since the mean on times are one with all the
distributions we are considering, takingλ = ρ/(1 − ρ) will make ρ the proportion of time in the on
phase. LetṼ be the Laplace transform of Var[A(t)], andF̃ andG̃ be the Laplace transforms of the off
and on distributions respectively. A special case of a formula derived by Krishnan [15] (see Eq. (A.7))
yields

Ṽ (s) = 2Q̃(s)

s2
,
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Fig. 1. Tail probabilities for six distributions.

where

Q̃(s) = λ

s(1 + λ)2
− λ[1 − F̃ (s)][1 − G̃(s)]

s2(1 + λ)[1 − F̃ (s)G̃(s)]
.

The graph of Log(Var[A(t)]) vs. Log(t) is called thevariance–time plot. When Var[A(t)] ≈ const× tβ ,
the standard deviation ofA(t) grows as

√
(const)tβ/2, andH = β/2 is called theHurst parameter. Thus,

H is half of the slope of the variance–time plot for large values of time. The variance–time plot was
constructed by numerically inverting̃V with EULER. The results are shown in Fig. 2.

In Fig. 2, the slightly damped BC curve is indistinguishable from the undamped curve; both have slope
1.5, which corresponds toH = 0.75. The moderately damped version has a slightly smaller slope. The
slope of theG2 curve is 1.10, yieldingH = 0.55. The other two curves are indistinguishable from each
other, and have a slope of 1.00 (H = 0.5) which is anticipated by theory. (Krishnan [15] shows that finite
variance impliesH = 0.5.)

The conclusions to be drawn from Figs. 1 and 2 are that the slightly damped version of BC is essentially
the same as the original distribution for arguments up to 10 000 times the mean, and the other distributions
are likely to produce shorter delays when they describe service times. Since we are concerned with delay
probabilities, these conclusions can be made quantitatively by calculating the probabilities of interest.
This is done in the next section.
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Fig. 2. Variance–time plot for six distributions.

3. Tails of the delay distribution

Now we examine the steady-state probability that the delay in queue (not including service time)
exceedst , which in symbols isP {W > t}. This distribution has intrinsic interest because delay is
an important performance measure; there is also another reason to examine it. SinceW also has the
interpretation of the amount of work in the queue (as used in Section 2.1), several authors (e.g. [16])
useP {W > t} as a proxy for the probability that a finite buffer of sizet overflows. (This probability is
defined precisely in Section 5.) This is done because it is often easier to calculateP {W > t} exactly,
or to approximate it, than it is calculate the overflow probability itself. In Section 5 we will see that
this may not be a good idea, but for now we explore the effects of the service-time distribution on
P {W > t}.

3.1. Numerical results

Let W̃ be the Laplace transform ofP {W > t}. From the Pollaczek–Khintchine formula (e.g. [3, pp.
7–66] we have

W̃ (s) = 1

s
− 1 − ρ

s + ρ − ρG̃(s)
, (3)



D.P. Heyman / Performance Evaluation 40 (2000) 47–70 55

Fig. 3.P {delay> t} for six distributions,ρ = 0.8 (log–log scale).

where the traffic intensityρ equals the arrival rateλ because all of our service-time distributions have
mean 1. From (3) one can deduce the Pollaczek–Khintchine formula for the mean delay,

E(W) = ρ
c2
s + 1

2(1 − ρ)
, (4)

where c2
s is the squared coefficient of variation of the service times. Sincecs = ∞ for Gbc and

G2, E(W) = ∞ for them. Withρ = 0.8,

E(W) =30 008 for slightly dampedGbc;
E(W) =322.0 for moderately dampedGbc;
E(W) =5.33 forG3 and gamma.

For BC,G2 andG3, Var(W) = ∞.
Eq. (3) was numerically inverted via EULER for the sixG’s of interest; the results are shown in Fig. 3.

In Fig. 3 BC and slightly damped BC are indistinguishable over the displayed range, which goes up to 1
million mean service times. Thus, the delay distribution is controlled (over this range) by thoset where
Gc

bc(t) and e−10−8tGc
bc(t) are approximately equal; from Fig. 1, this includes the interval [0, 10 000]. Thus,

agreement of the bodies of the service-time distributions is important, and disagreement of the tails is
not important. TheG3 and gamma curves become very different whent > 10, so again the form in the
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Fig. 4.P {delay> t ρ = 0.8}/P {delay> t; ρ = 0.1} (log–log scale).

body of the service-time distribution is important. The slope (on a log–log scale) of the BC and slightly
damped BC curves are−1/2, and the slope of theG2 curve is−1. When the same curves are drawn when
ρ = 0.1, the curves are similar in form to the curves in Fig. 3 and are shifted downwards. To compare
the curves forρ = 0.1 to those forρ = 0.8, the ratios of the c.d.f.’s, excluding the gamma distribution
(because that ratio is much larger than the others) are shown in Fig. 4. There is an analytic way to explain
these empirical results. It is also interesting that moderately damped BC is close to BC until 100, larger
thanG2 until almost 100 000, and always larger thanG3.

3.2. Analytic explanations

The following continuity argument shows that some damped BC will provide an arbitrarily close
approximation of the tail probabilities induced by BC. It is clear from (2) that for everys, d̃(s) → g̃(s)

asδ → 0. Let W̃δ be the Laplace transform ofP {W > t} whenδ is the damping coefficient;̃W0 = W̃ .
In (3), W̃ is a continuous function of̃G, so W̃δ(s) → W̃ (s) asδ → 0. From the continuity theorem
[17, Chapter XIII] for Laplace transforms, the tail probabilities converge as well. This argument does not
explain whyδ = 10−8 works as well as it does, or even that it will work at all.

A more detailed analysis of the close agreement between BC and slightly damped BC can be obtained
as follows. Pakes [18] proved that for a GI/G/1 queue with traffic intensityρ < 1 in which the generic
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service-time random variableS satisfiesE(S) = 1, E(esS) = ∞ for all s > 0, and the c.d.f. ofS has the
subexponential property, then

P {W > t} ≈ ρ

1 − ρ

∫ ∞

t

Gc(x)dx (t → ∞). (5)

The subexponential property is somewhat esoteric.2 Fortunately, we have this claim in [10].
Since power-law-tailed distributions have the property thatEesS = ∞, because exponentials go to

infinity faster than polynomials, we can expect (5) to hold in in our investigations. The conditionE(S) =
1 and the identity

∫ ∞
0 Gc(x) dx = E(S) imply that (5) can be written as

P {W > t} ≈ ρ

1 − ρ

[
1 −

∫ t

0
Gc(x) dx

]
(t → ∞). (5a)

Fig. 1 shows that the area under theGc curves agree for BC and slightly damped BC, so (5a) shows that
the tails of the waiting times will also agree. Eq. (5a) gives the essential property that is needed for two
service-time c.d.f.’s to produce similar tails of the delay distributions; namely, ifGc andH c are c.d.f.’s,
andWG andWH are the steady-state waiting times they produce, then∫ t

0
Gc(x)dx

app=
∫ t

0
H c(x) dx ⇒ P {WG > t}app=P {WH > t} (t → ∞).

The asymptotic slopes in Fig. 3 can be explained by Eq. (15) in [10], which is the following.
WhenE(S) = 1 andP {S > x} ≈ αrx

−r asx → ∞ for r > 1, then

P {W > t} ≈ ρ

1 − ρ

αr

r − 1
t−(r−1) as t → ∞. (6)

The factorρ/(1−ρ) explains why theρ = 0.1 curves asymptotically are a downward shift of theρ = 0.8
curves for BC,G2 andG3, with a ratio of 36, as shown in Fig. 4. Since slightly damped BC is very close
to BC, it also satisfies (6); moderately damped BC is close to BC for a while, so it does not quite satisfy
(6). The gamma service-time distribution leads to an exponential tail for the waiting time, so there is no
reason for it to satisfy (6). It does not, and it is excluded from Fig. 4 because the ratio reaches 5 million
whent = 30.

For BC,r = 3/2 so (6) predicts that the BC curve in Fig. 3 should eventually have a slope of−1/2,
which it does fort ≥ 1000. ForG2, r = 2 so (6) predicts that theG2 curve in Fig. 3 should eventually
have a slope of−1, which it does fort ≥ 100. ForG3, r = 3 so (6) predicts that theG3 curve in Fig.
3 should eventually have a slope of−2, which it does fort ≥ 300. It may be surprising that (6) obtains
the correct slope for such small values oft . It might be more surprising that it produces a very accurate
approximation for BC andG3, and a good approximation forG2. The exact and approximate values are
shown in Fig. 5.

3.3. Effects of truncation

Slightly damped and moderately damped BC are noticeably different in Figs. 1–4. Here we inves-
tigate the effects of damping in more detail. Since file sizes are bounded by the size of the memory

2 For practical purposes, the subexponential property can be regarded as equivalent toEesS = ∞ for all s > 0.
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Fig. 5. Tail probabilities and approximations for three distributions.

that contains the files, it would seem appropriate to place an upper bound on file sizes. This would in-
duce a bound on file transfer times in the model in Section 2.1. Truncating the distributions we have
used leads to analytic difficulties that are best avoided, so we use damping to approximate truncating.
Since

e10−2app=1 − 10−2 = 0.99 and e−10 = 4.5 × 10−5,

a damping factor of 10−k begins to have a strong effect onP {S > t} whent reaches 10k−2 and effectively
truncates the tail probability whent reaches 10k+1. Although damping isn’t the same as truncating, it has
an advantage because it models some uncertainty about the true upper bound.

Fig. 6 shows the tails of the service-time distributions for damping factors 10−k, k = 4, 5, 6, 7, and 8
applied to BC. Moderately damped BC begins to differ from the others whent is near 5000, and the others
(especially 6, 7, and 8) remain close up tot = 100 000. The tails of the delay distribution are shown
in Fig. 7. The separation of the curves is much larger in Fig. 7 than in Fig. 6; i.e. the effect of damping
(truncation) is larger on queueing performance than on the service-time distribution. Table 1 gives more
detail about the curves in Fig. 7. From Table 1 we see that the damping factor (truncation level) can have
a significant impact on the value oft needed to achieve a givenP {W > t}. The last two columns of Table
1 show that slightly damped BC is indistinguishable from BC.



D.P. Heyman / Performance Evaluation 40 (2000) 47–70 59

Fig. 6.P {S > t} for five damping factors.

4. Rate of approach to the steady state

Now we examine the rate at which the steady-state is achieved in an M/G/1 queue as a function of the
service-time distribution. This is done by numerically inverting the Laplace transform of the number in
the system (in queue plus in service) at timet when the system is empty at time 0.

4.1. Numerical results

The Laplace transform of the expected number in the system (in queue plus in service) at timet when
the system is empty at time 0 is given by Eq. (4.52) in [19], which is intricate and will not be given
here. The transform was numerically inverted with EULER; the results are shown in Fig. 8. Since the

Table 1
P {W > t} for several damping factors

t Damping factor

10−4 10−5 10−6 10−7 10−8 0

1000 0.0071 0.1130 0.1300 0.1344 0.1370 0.1370
10 000 2.3 × 10−3 0.0199 0.0350 0.0416 0.0449 0.0449

100 000 9.6 × 10−9 0.0006 0.0060 0.0110 0.0143 0.0143
1 000 000 0.0000 0.0000 0.0002 0.0019 0.0045 0.0045
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Fig. 7.P {W > t} for five damping factors.

number-in-system and waiting-time processes have the same regeneration epochs (when they reach 0),
their approach to the steady-state should be similar.

Natural time units are shown in Fig. 8; they were obtained in the following way. Consider a residential
WWW service. Most subscribers currently have modems that work no faster than 28.8 Kbps. The X.2
modems work at twice that rate, and some subscribers may have ISDN access, which is 128 Kbps. To
be very conservative, assume all users have ISDN access. An estimate of the mean download file size is
20 000 bytes [20], which takes 160/128 s to download at the ISDN rate. Round this down to 1 s. That is
the mean service-time used in Fig. 8, and time is measured in mean service-times.

In Fig. 8 theG3 and the gamma curves coincide and reach their steady-state value of 5.0666. . . rapidly.
The value ofG3 is 4.95 at 5 min and 5.00 at 6 min, 40 s. The BC and slightly damped BC curves also
coincide. The BC, damped BC, andG2 curves approach their limiting value (finite for damped BC and
infinite for BC andG2) so slowly that the engineering value of steady-state performance measures is
dubious. Even though theG2 curve is approaching infinity and the moderately damped BC curve is
approaching 648, the former curve is only 12% of the latter curve whent = 15 000; the transient values
can be misleading about the steady-state values. All of the curves appear to be approaching their limiting
value in a concave way.

4.2. Analytic explanation

An analytic explanation for the qualitative behavior in Fig. 8 is based on an approximate model
for the time-dependent behavior of the virtual-delay process of an M/G/1 queue developed by Gaver
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Fig. 8. Approach to steady-state system length.

[21]. The approximate model is Brownian motion (with drift) with a reflecting barrier at thex-axis. We
restrict our attention to the situation where the system is empty at time 0. LetF(x, t) be the prob-
ability that the Brownian motion is no larger thanx at time t . ThenF satisfies the partial differential
equation

Ḟ = −µF ′ + σ 2

2
F ′′ (7a)

with boundary equation

F(x, t) = 0 forx ≤ 0, t ≥ 0. (7b)

In (7a), the dot denotes partial differentiation with respect tot and the prime denotes partial differentiation
with respect tox. The parametersµ andσ 2 are

µ = ρ − 1 and σ 2 = ρ(c2
s + 1) (8)

when the mean service time is 1.
One can solve (7a) and (7b) via Laplace transforms and estimate the curves in Fig. 8, but there is a

more insightful way to use (7a) and (7b). Gaver shows that by scaling time and space (i.e. the amount of
virtual delay) to
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Table 2
Mean of scaled diffusion

τ(p) 1.0 1.4 2.15 4.2

Mean 0.425 0.450 0.475 0.495
% limit (100p) 85 90 95 99

τ = µ2

σ 2
t and ξ = µ

σ 2
x, (9)

(7a) is converted to the dimensionless form

Ḟ = −F ′ + 1

2
F ′′ (10)

which can be solved once, and the probabilities in the natural units recovered by rescaling via (9). Let
Wscaled(τ ) be the scaled process governed by (10) and (7b). Gaver shows that∫ ∞

0
e−sτE[Wscaled(τ )]dτ = 1

s(1 + √
1 + 2s)

, (11)

which can be numerically inverted using EULER. It is easy to obtain

lim
τ→∞E[Wscaled(τ )] = 1

2

from (11), soE[Wscaled(τ )] can be conveniently expressed as a percentage of its limiting value. Doing so
yields Table 2.

Thus, from Table 2, (8) and (9) we see that for the mean of the unscaled diffusion to be within(100×p)%
of its steady-state value,

t ≥ c2
s + 1

(1 − ρ)2
τ(p)

is required, whereτ(p) is read from Table 2. Convergence is slower for larger traffic intensities, and is
very slow for very largecs . To achieve 99% of the steady-state value,

t ≥ 4.2
c2
s + 1

(1 − ρ)2

is required.
If the diffusion model were a good approximation, it would explain why convergence is rapid with the

gamma andG3 service times (c2
s = 5/3) and why convergence is very slow with the other service times

(c2
s is very large). Figs. 9 and 10 show that the diffusion model gives an estimate of the rate of convergence

to the steady-state that is faster than the exact rate of convergence.
The results given in this section demonstrate that with fat-tailed service-times and infinite buffers, the

steady-state queue lengths are a very poor indicator of the queue lengths that would be observed in finite
time spans of engineering interest. The same conclusion was reached by Lipsky and Hatem [22] and by
Greiner et al. [23]. Finite buffers force queue lengths to be smaller than they would have been if an infinite
buffer were used, which causes the system to empty (and thus, regenerate) more often. Consequently, the
M/G/1/N queue may converge fast enough; this should be investigated.
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Fig. 9. Exact and approximate convergence rates for moderately damped BC service times.

5. Finite buffers

The M/G/1 models considered in the previous sections have an infinite buffer, which is taken to be
an approximation of a finite buffer that is large enough to keep the overflow rate small. The probability
that a buffer of sizeb overflows is sometimes approximated by the waiting-time distributionP {W > b}
of an infinite-buffer system (e.g. [16]). In this section we investigate the efficacy of this approximation.
Previous investigations of this kind include [24–26]. In those studies, the arrival process was varied and
the service times were fixed. Here, we fix the arrival process and vary the service-time distribution, and
obtain somewhat different results than the previous studies did. We share with those studies some results
that show that the approximation can be poor.

Let π be the steady-state distribution of the standard embedded Markov chain (with an infinite buffer)
for the number present at departure epochs. Its probability generating function (π̂ say) is given by the
Pollaczek–Khintchine formula

π̂(z) = (1 − ρ)
(z − 1)G̃(ρ − ρz)

z − G̃(ρ − ρz)

when the mean service time is 1. Let

πc(b) =
∞∑

i=b+1

π(i),
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Fig. 10. Exact (solid) and approximate (dotted) convergence rates for gamma andG3 service times.

whereπ(i) is theith element ofπ . Let πb be the steady-state distribution of the number of customers
present at departure epochs when the buffer is of sizeb. (Soπ is shorthand forπ∞.) The upper-Hessenberg
form of the transition matrix for the embedded Markov chain for the M/G/1 queue leads to the following
fact (see, e.g. exercise 752 in [3]);

πb(i) = π(i)

1 − πc(b)
, i = 0, 1, . . . , b. (12)

Let pb be the steady-state distribution of the number of customers present just before an arrival epoch
when the buffer is of sizeb. The exact overflow probability ispb(b + 1); it is given in Eqs. (9)–(13) in
[27] which is

pb(b + 1) = 1 − 1

ρ + πb(0)
. (13)

Numerical values of the overflow probability can be obtained from numerical inversion ofπ̂ , (12) and
(13). The numerical inversion was done via the algorithmLATTICE-POISSON [28].

5.1. Numerical results

The efficacy of usingP {W > b} to approximatepb(b+1) is illustrated by the ratioP {W > b}/pb(b+1)

is shown in Fig. 11 for various values ofb whenρ = 0.8. In Fig. 11 we see that the ratio gets very large
very quickly for the gamma distribution, gets very large more slowly for theG3 and moderately damped
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Fig. 11. Comparison ofP {W > b}/pb(b + 1) whenρ = 0.8.

BC distributions, approaches 6 quickly for theG2 distribution, and the other two ratios approach 6 slowly.
The approximation works best for the distributions with the largest variances. It is very poor for gamma
and moderately damped BC distributions; for the other distributions it may be a matter of context if the
error by a factor of 6 is acceptable or not.

An analytic explanation of the curves in Fig. 11 can be obtained from (13) by substitutingπ(0) = 1−ρ

in (12) with i = 0, substituting this in (13), and rearranging terms to get

πc(b + 1)

pb(b + 1)
= 1 − ρπc(b + 1)

1 − ρ

app= 1

1 − ρ
. (14)

Let X be the random variable representing the steady-state occupancy (number in queue plus
in service) in the infinite-buffer model, soπc(b) = P {X > b}. If πc(b + 1) is a good approx-
imation of P {W > b}, then P {W > b}/P {X > b} is close to 1. In this case, (14) can be
rewritten as

πc(b + 1)

pb(b + 1)

app= P {W > b}
pb(b + 1)

app= 1

1 − ρ
.

This implies that the ratios shown in Fig. 11 should be about 5 whenρ = 0.8.
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Fig. 12. Comparison ofP {W > b}/P {X > b} whenρ = 0.8.

This explanation for the behavior of the approximation provides a relation between the exact and the
approximate probabilities. Rearranging the equality in (14) yields that approximation forpb(b + 1) in
terms ofP {W > b} proposed by Gouweleeuw and Tijms [29], namely

pb(b + 1)
app= (1 − ρ)P {W > b}

1 − ρP {W > b} . (15)

The ratioP {W > b}/P {X > b} is plotted for the six distributions we are considering in Fig. 12. The
approximation is good for the power-law-tailed distributions and not for the other two, as shown in Fig.
12. The ratios that are close to one in Fig. 12 (BC, slightly damped BC, andG2) correspond to the
distributions that were close to 6 in Fig. (11). The quality of the approximation tested in Fig. 12 appears
to explain the quality of the approximation tested in Fig. 11.

6. Conclusions

There are two main conclusions that should be drawn from this study. The first is that for power-law-tailed
service-time distributions with infinite variances, it is not the infinite variance per se that affects estimates
of the performance measures; it is the shape of the distribution over a large part of it’s support that matters.
This was demonstrated by showing that the BC distribution (which has infinite variance) and the slightly
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damped BC distribution (which agrees with BC from 0 to 10 000 mean holding-times, but has finite
variance) yield indistinguishable buffer-overflow probabilities for buffer sizes ranging from 1 to 15 000
mean service-times of work, and indistinguishable delay probabilities over the same range. Moreover,
theG2 distribution has an infinite variance and noticeably different overflow and delay probabilities from
the previously mentioned pair, and the moderately damped BC distribution yields overflow and delay
probabilities that are in between those induced by BC andG2. In addition to showing that slight damping
can have a very small effect, we showed that more aggressive damping can have a small effect on the
service times and a large effect on the delay distribution. We argued that this is a good approximation of
the effect of truncating the service-time distribution.

The second main conclusion is that when the service times have a very large variance, the rate of
convergence to steady-state performance measures will be so slow that these measures are unlikely to be
of engineering interest. This was demonstrated by the computations graphed in Fig. 8, and the scaling
of a diffusion model approximation of the M/G/1 queue. It is possible that a finite-buffer version of the
M/G/1 queue may converge fast enough for the steady-state probabilities to be relevant; this should be
investigated.

A more qualified conclusion is that approximating the probability that a buffer of sizeb overflows by the
probability that the work in the system exceedsb is suspect. The approximation appears to be very poor
unlessthe service times have a distribution with a very large variance. In that case, the approximation over
estimates the true loss probability by a factor of approximately 1/(1−ρ), whereρ is the traffic intensity.

A modeling implication of the first conclusion is that fitting a distribution with infinite support to data
should be done with practical considerations in mind. It has never been suggested that voice telephone
calls could last indefinitely, but using a truncated distribution instead would have increased the analytic
complexity of the performance models considerably, and changed the results very little. This study was
motivated by data on file sizes, which are inherently bounded by the largest memory available. The data
indicate that large file sizes obey a power-law-tail distribution, but the small file sizes do not; a mixture
of two distributions seems to be appropriate. Fitting an unbounded Pareto distribution to the observed
hyperbolic shape of the tail of the empirical histogram can be a poor thing to do if the infinite moments
of the fitted distribution will cause problems in choosing the mixing parameters, e.g. matching the mean
and variance of the data. This is an especially poor thing to do because the Pareto distribution can be
truncated to a finite support easily.

The engineering implication of the second conclusion is that when service times have a very large
variance (such as file transfers on the WWW), performance criteria other than steady-state measures have
to be used. What these performance criteria should be is an open question that deserves more attention. The
third conclusion implies that using an infinite buffer model may not be a good approximation, even when
the physical buffer is large. This means that performance models should explicitly model finite buffers
except when the performance in the finite-buffer model can be related to the performance measures in
the infinite-buffer model, as in (14) and (15).
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Appendix A. Krishnan’s formula

Since Krishnan’s paper [15] is unpublished, his result used in Section 2.4 is derived here (with the
author’s permission). Consider the on–off model (or alternating renewal process) described in Section
2.1. I assume knowledge of the facts about alternating renewal processes as given, say, in Sections 4 and 5
of [3]. Letνf be the mean of the off-period distribution (F ) andνg be the mean of the on-period distribution
(G). For simplicity, assume thatF andG have densities, and denote them byf andg, respectively. If
F or G has mass at the origin, append this mass to the density function with a delta function. Laplace
transforms will be denoted by a tilde.

LetX(t) be the rate at which traffic is being generated at timet , soX(t) = 1 whent falls in an on-period
andX(t) = 0 whent falls in an off-period. Assume thatX is in the steady-state at time 0, so

p1
def=P {X(t) = 1} = νg

νg + νf

, t >= 0.

For each sample path of the stochastic processX, ω say, define the random variableZ(t, ω) by

Z(t, ω) =
∫ t

0
X(u, ω) du, t > 0.

It is the amount of traffic that arrives during (0,t ]. In alternating renewal process terminology, it is the
amount of time in the on state by timet . From here on, the argumentω will be supressed. Let

mz(t) = E[Z(t)] and σ 2
z = Var[Z(t)];

these are the objects we want formulas for. Clearly

mz(t) = p1t, t > 0,

so our task is to compute the variance. Define the product momentRz(·) by

Rz(τ) = E[Z(t)Z(t + τ)]; (A.1)

it is the same for anyt by stationarity. Then

σ 2
z (t) = E

{∫ t

0

∫ t

0
X(u)X(v) du dv

}
− {E[X(t)]}2 =

∫ t

0

∫ t

0
E{X(u)X(v)} du dv − (p1t)

2

= 2
∫ t

0
Rz(τ)(t − τ) dτ − (p1t)

2, (A.2)

where the change of variableτ = v − u is used to obtain the last equation. We will obtain the Laplace
transform of the variance from the Laplace transform ofRz.

We start by defining the probability

a(τ) = P {X(t + τ) = 1|X(t) = 1}.
Conditioning on the value ofZ(t) in (A.1) yields

Rz(τ) = p0a(τ). (A.3)

Towards obtaininga(τ) define the probabilities

b11(τ ) = P {X(t + τ) = 1|X(t) = 1, X(t−) = 0}
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and

b01(τ ) = P {X(t + τ) = 1|X(t) = 0, X(t−) = 1}
for τ > 0 and anyt . Conditioning on the length of the first event yields

b11(τ ) = 1 − G(τ) +
∫ τ

0
g(u)b01(τ − u) du

and

b01(τ ) =
∫ τ

0
f (u)b01(τ − u) du.

Taking Laplace transforms on both sides and solving simultaneously yields

b̃11(s) = 1 − g̃(s)

s[1 − g̃(s)f̃ (s)]
(A.4)

and

b̃01(s) = f̃ (s)b̃11(s). (A.5)

We obtain a renewal equation fora by noticing that the conditioning event implies that the remaining life
of the on period in progress at timet is the equilibrium excess of a generic on period, so its density,ĝ

say, is given bŷg(τ) = [1 − G(τ)]/νg. Thus,

a(τ) = 1 −
∫ τ

0
ĝ(u) du +

∫ τ

0
ĝ(u)b01(τ − u) du

which, upon taking Laplace transforms on both sides and using (A.4) and (A.5) yields

ã(s) = sνg(1 − g̃f̃ ) − (1 − g̃)(1 − f̃ )

s2νg(1 − g̃f̃ )
(A.6)

where the arguments is suppressed on the right-side for notational ease. Taking Laplace transforms on
both sides of (A.3), using (A.4)–(A.6), and then substituting into the Laplace transformed version of (A.2)
produces the final result

σ̃ 2
z (s) = 2

s2

[
νgνf

s(νgνf )2
− (1 − g̃)(1 − f̃ )

s2(νg + νf )(1 − g̃f̃ )

]
. (A.7)
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