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ABSTRACT. The paper gives the complete solution
for a stochastic fluid model of statistical multiplexing
with loss priorities in ATM-based Broadband-ISDN. In
this model each Markov Modulated Fluid Source
generates “‘priority’’ and ‘‘marked’’ cell streams which
are bursty (i.e., correlated in time), mutually correlated
and periodic during bursts. The output of many such
sources are buffered and multiplexed for transmission.
The loss priority is implemented by selectively
discarding marked cells when the buffer content exceeds
a threshold level. The equilibrium state distribution
exhibits jumps, a feature not existent in prior fluid
models. The computational complexity for 2-state
sources is dominated by a single system of linear
equations of dimension equal to twice the number of
sources; in particular, the complexity is independent of
buffer size. The complete delay distribution for each
traffic class is obtained. The numerical results
demonstrate the manner in which (i) the threshold level
controls the trade-off between delay of the priority cells
and the loss probability of the marked cells, and (ii) the
buffer size controls the loss probability of the priority
cells. The analysis is generalized to several priority
classes of traffic; this extension has significant potential
for real-time services.

1. INTRODUCTION

This paper is on models and analytical techniques for
statistical multiplexing with loss priorities, a central element
of the future Broadband Integrated Services Digital Network

priority cells

(B-ISDN) which will use the Asynchronous Transfer Mode
(ATM). A complementary paper [EM91(a)] treats access
regulation. The two papers are of independent interest;
together they provide the basis for a complete analysis of the
system shown in Figure 1.1 which combines access
regulation and statistical multiplexing with loss priorities.

Traffic in the emerging high speed networks is expected
to be characterized by high burstiness and high variability in
the bit rates, as recent studies on video [MAS88, KMRg9,
GV91], packetized voice [PD89] and facsimile [CD89] have
shown. Hence, efficiency considerations force multiplexing
to be the core of ATM. The cell structure of ATM is geared
for efficient and standardized multiplexing. “‘Loss
priorities”’ is another key concept that is built into ATM
standards [CC90, CP90, EL90]. Cells which are judged to
be in violation of contracts between the network and users
are “‘marked’’, typically carried and dropped only in the last
resort. As such it represents a ‘‘soft’”” violation tagging
process. The motivation for this stems from the realization
that burstiness, due to its very statistical nature, is hard to
characterize precisely and to police. Hence loss priorities is
an important mechanism for achieving the dual goals of
efficiency and fairness. Yet another point of view [AS91]
advocates marking to segregate traffic from services which
place a premium on low loss in contrast to low delay
variance.

Statistical multiplexing has been studied under various
analytic frameworks. One such framework is based on
Markov Modulated Poisson Processes (MMPP). The
technique of Heffes and Lucantoni [HL.86], which relies on
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Figure 1.1: Integrated system of access regulation and statistical multiplexing
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Matrix Geometric methods [NE81], is an example. Daigle
and Lucantoni [DL90] compute the “‘rate matrix’’ from its
spectral representation; they also point to the slow
convergence of the conventional Matrix Geometric methods
in conditions of high burstiness and traffic intensity, and also
to the computational complexity in typical applications.
Elwalid, Mitra and Stern [EMS91] develop algebraic
techniques which give exact decompositions and efficient
algorithins  for computing spectral representations of
solutions in the MMPP framework. See also [ID88]. A
second framework relies on approximations by renewal
processes and their characterizations by two moments. A
prototypical work is that of Sriram and Whitt [SW86]. A
third framework, which is adopted here, is based on
stochastic fluid models [AM82, GL82, KO84, Mi88, SE91,
CI91]. The bursty traffic sources are modelled as Markov
Modulated Fluid Sources in which the state of the
controlling continuous time Markov chain determines the
rate of fluid generation. As several authors have recently
noted, these fluid models are well matched to the ATM
environment at the burst level {DJ88, MA8S, MG90, KO90,
BC91, GH91, NR91]. There are several fundamental
reasons; the small and uniform cell size (and hence constant
service time) and the constant interarrival time of the cells in
a burst at the time of generation (*‘periodicity’’) fit easily in
the fluid framework and is difficult to handle in the queueing
framework; the numerical complexity of solving fluid
models with finite buffers does not depend on buffer size
while with queueing model the complexity increases. The
fluid approximation presumes a separation of time scales, i.e.
the interarrival time of cells is small with respect to the time
between changes in the rate, which is a feature of the high
speed ATM environment. Several comparative evaluations
of techniques for modelling and analyzing statistical
multiplexing now exist [DL86, NK91, KT90]; these studies
have found the approach in [AMS82] which is based on
stochastic fluid models, to be effective at the burst level in its
accuracy and capacity to solve large systems.
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The immediate precursor to this paper is [EM91(a)]
which studies the access regulator (see Figure 1.1) and
obtains results on (i) the 3-way trade-off between
throughput, delay and burstiness of its output; (ii) the
statistical characterization of t(he output streams of
“‘priority’”” and ‘‘marked’’ cells. The characterization is in
terms of another Markov Modulated Fluid Source which is
novel in having coupling between the two traffic streams.
This is the starting point of the present work. Specifically, in
this model each state of the controlling Markov chain is
associated with two cell generation rates, one for the priority
cell stream and the other for the marked cell stream. We let
G denote the generator of the controlling Markov chain, and
vf” and vgz) respectively denote the rates of generation of
priority and marked cells when the source is in state i. (In
our notational system classes 1 and 2 respectively refer to
the priority and marked cells, and the class index is specified
by the superscript in parenthesis.) Thus each Markov
Modulated Fluid Source is here characterized by
(G; v, vm), see Figure 1.2.  Coupling captures
correlations between streams. Such correlations typically
exist; for example, in coded video during bursts both priority
and marked cells are simultaneously generated at a high rate.
The correlation represented by such coupling is believed to
be important and new to the analysis of stalistical
multiplexing.

In this paper we focus on the simple class of sources
with two states and let

G- [—Ba _a}

With appropriate selection of the state-dependent fluid
generation rates we obtain the on-off sources with
exponentially distributed on and off periods [AMS2]; for
such sources the off and on states are respectively indexed 1
and 2. The case of coupled Markov Modulated Fluid
Sources with a larger number of states is considered in
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Figure 1.2: Statistical multiplexing with loss priorities of K Markov Modulated Fluid Sources. The case of 2 priority classes
is depicted here. The extension to multiple priority classes is considered in Section 3.
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[EM91(b)]; the treatment there is considerably more
extensive than the one here.

The loss priority mechanism considered in Section 2
discards marked cells when the buffer occupancy exceeds
the threshold B, (B, < B). All incoming cells are accepted
if the buffer occupancy is less than B and priority cells are
lost only if the buffer is full. When the buffer occupancy is
exactly B, the rate at which marked cells are accepted
equals the residual capacity, if any, of the output channel
after carrying the priority cells. Service to cells already in
the buffer is provided on a FCFS basis. Hence resequencing
is not necessary. Note that the presence of marked cells in
the buffer influence the delay seen by the priority cells. This
influence is controlled by the choice of B;. Thus the
threshold B controls the important trade-off between delay
of the priority cells and the loss probability of the marked
cells. The buffer size B determines the trade-off between the
loss probability of the priority cells and their maximum
delay. The choice of B will typically be sufficiently large for
the loss probability of priority cells to be very small, and in
this range the choice of B will have an insignificant effect on
the performance of the marked cells.

Several recent papers have dealt with priority
mechanisms for ATM {LP90, BF91, LB91, KH91]. The
models and the analyses in these papers are quite different
from the one considered here. Both Bonomi etal [BF91]
and Le Boudec [ILB91] work with discrete-time, finite state
Markov processes and in each case the algorithms are
computationally intensive. For instance, the exact algorithm
in [LB91] requires a large matrix to be inverted at each value
of n, where n indexes the buffer content in cells. In [BF91]
priority is assigned by a Bernoulli process. Kroner et al
[KH91] present only loss probabilities.

The loss priority mechanism considered here may be
viewed as the analog of ‘‘trunk reservations’’, which is a key
concept in circuit-switched communications [AK84].

In Section 3 we consider the natural extension of the loss
priority mechanism from two traffic classes, priority and
marked, to an arbitrary number. The motivation is as
follows: if the traffic offered to nodal switches come with
additional information (coded in the priority levels) on their
relative importance in service quality, then during
congestion periods, when cells have to be dropped, the
switch can be precise in dropping only the least important.
The degree of precision depends on the number of priority
levels. Garrett and Vetterli [GV91] have provided evidence
that a small number of priority classes is adequate for video
and voice applications; the increased implementational
complexity and diminishing returns does not justify many
priority classes. Such forms of multiple priorities and loss
control mechanisms constitute a shift from ‘‘source based”’
to ‘‘switch based’’ congestion control {JA91, GV91]. The
former is reliant on feedback while the latter is open-loop
and better matched to wide area networks with large
propagation delays. Thus loss priorities with the number of

priority classes small but typically more than two offers
major advantages in real-time applications.

2. STATISTICAL MULTIPLEXING WITH TWO
PRIORITY CLASSES

In this Section we consider the multiplexing of the
output of K Markov Modulated Fluid Sources each with two
states. The controlling Markov chain of each source is
described by the generator G given in (1.1). When in state i
(i=1, 2) the source generates cells of the priority class at
rate vfl), and marked cells at rate v,@. A simple special case
of this model is obtained when v{" = v{® = 0 in which
case state 1 may be called the ‘‘off’’ state and state 2 the
“‘on’’ state.

We let £, denote the state at time f of the aggregate of
the K sources. In this paper it suffices to define Z, to be the
number of sources in state 2. Thus in the particular case of
on-off sources T, denotes the number of on sources at time /.
We denote the space of aggregate-source states by &; hence
¥ =1{0,1,..,K})and Z,e ¥. Itis convenient to define, in
general,

AP 4 rate of generation of class k traffic, given X, = i
=ivl + (K-i) v @1

Let X, denote the total fluid content of the buffer at time
t. Since marked cells are selectively discarded when X,
exceeds B,

d

M,
EX'= [vz \2) ]E, +

[vﬁ”wﬁ”] (K-%,) - ¢ (0<X,<B,)

=vi'L,+v{"(K-Z)) - ¢ (B,<X,<B) (22

where ¢ is the channel capacity. The behavior at the
boundaries is especial. When X, = 0,

.
% X,= [[vgluvg”] 5,4+ [v‘l“+v‘f>] (K—Z,)—c] 23)

and when X, = B,
—:; X,= MOz, + VK- - e

The behavior of dX /dt at X =B,
noteworthy. If

is different and
M0z, + v k-z)-c| - @.5)
[{v§1)+v§2)] Z,+ [v‘ll)+v(12)](K—):t)—c] >0

ie., the terms in brackets have the same sign, then (2.2)
implies the important fact that X, /dt is nonzero and has the
same sign for both X, <B, and X,>B . The sign is easily
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obtained:

—“11[ X,>0 if |:v(2”2,+v(l”(K—):,)—c:l >0 (26))
and,

d . .

@ X, <0if (2.6,ii)

[[v‘zl)+v(22)] L, + [v‘,”+v§2)] (K—):,)—c] <0
On the other hand, if instead of (2.5),
[v(zl’):, + vV (K-%,) - c] <0 @
0< va” + v?’] z,+ [v‘ll) + v(IZ)](K—):,) ~ c}

then we have the following extraordinary situation implied
by (2.2):

d . .
EX’ >0 if X,<B, (2.8,i)
<0 if X,>B, (2.8,ii)
Hence, importantly,
iX, =0 if X,=B, (2.8,ii1)

dt

That is, for the particular aggregate-source states satisfying
(2.7), there is a confluence of drifts at X = B - Notice that
once X, = B, and (2.7) hold, this condition persists until the
aggregate-source state makes a transition to where (2.7) does
not hold. As we shall see, the phenomenon of confluence of
drifts and its consequence, the persistence of the buffer
content at B, have an important effect on the stationary
distribution of the system. In the following pictorial
summary the drifts dX /dt in the three cases respectively
identified in (2.6,1), (2.6,ii) and (2.7) are shown.

L > | |
0 B, B
L - 1<
0 B, B
L — sl |
0 B, B

The state distribution of the system in equilibrium is
given by
700 = fm Pr [T, =i, X, <3 e 0<x<BQ2Y)

e

(In what follows we drop the subscript # when specifying
stationary distributions.)
Let ®(x) = [my(x) m,(x) - mg(x)]. Following the
procedure in, say, [AMS82], the govering differential
equations are readily obtained:

% a0D” =x(0M (0 <x<B)) (2.10,i)
4 D = (XM (B, <x<B)
ax Y =Tl ! (2.10,ii)

where,
D =diag {xg‘ung’—c, AP +AP —c, x;“u}?’—c}

(2.11,)

and,
DY = diag {xg"—c, AV -c, ., x;‘)—c} . 211,

The i™ diagonal element of the matrix D is the drift or rate
of change of the buffer content (away from the boundaries)
when the aggregate-source state is i (i=0, 1, ..., K) and the
buffer occupancy level is j (j=0, 1). (The convention we
have adopted for the buffer occupancy level index is: j=0 if
0<X<B, and j=1 if B, < X <B. Note that the
superscript in parenthesis may denote either the class or the
buffer occupancy level; the context will make clear which.)

On substituting the expressions for {X?‘) } in (2.1) we
obtain (j=0, 1)
D(j):diag (_C(j) , w(l)_c(j) , Zm(j) __c(j) Y s Km(j)_c(j) }
(2.12)
where,
WA lw_w s ¥ om
072 F vy  —vi0r eV EBe-K Y ViYL @13
k=1 k=1

The form in (2.12) is important since it exposes the linear
growth property of the diagonal elements of D' for each J-

The matrix M in (2.10) is the tridiagonal generator of the
birth and death process on {0, 1, ..., K} which describes the
aggregate-source process.

M, =ip (j=i-1)
=—{ip+K-DHa} (=1 2.14)
=(K-ia (j=i+1)

The system of differential equations in (2.10) for each
individual level of buffer occupancy has been treated in
[AMS82]. Following this treatment we obtain

K
#0=x0)=3 a° ¢ exp(z®x) (0<x<B,)
i=o

(2.15)

K
=xV0)=3 a” ¢V exp (V1) (B,<x<B)
i=0

3C.a4
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Here {z(” ¢ﬁ~j)} are solutions to two (j=0, 1) sets of

eigenvalue problems:

226DV = ¢’M  (i=0,1,..,K) (216)

Closed-form  solutions for (hese eigenvalues and
eigenvectors have been given in [AM82] and we will assume
that these are known. These results explou the linear growth
property in the diagonal elements of D ) and the linearity of
the birth and death rates in M, see (2.14). These results have
been extensively extended in {[KO84, MI88, SE91, EMS91,
EMO1(b)].

In (2.15) the coefficients {a,(j) } are obtained from the
boundary conditions. We consider next the composition of
the equauons which express the boundary conditions. Let
8’ ) denote the set of aggregate-source states which give a

downward drift to the buffer content when the level of buffer

occupancy is j; similarly, let & (L}) be the set of aggregate-
source states giving an upward drift. Thatis, forj = 0, 1,

¥ = (i|IpY <0}, Y = {iip} >0} @17
(We make the inessential but simplifying assumption that
there exists no i such that D;; - 0; [MI88] has shown how
excepm)ns ma; (y be handled.) A little thought shows that
£,e9Y N gy is equivalent to the condition in (2.7). As
shown in (2. 8) for such aggregate-source states there is a
confluence of drifts at X = B,. As a consequence there is
probability mass accumulation at B, which causes wt;(x) to
have a discontinuity, ie. a jump, at x=B, for
i€ 3’(19) N yg’, In contrast, as (2.6) shows,

ey  implies % X, <0, (2.18,)

x4  implies -j—tX,>0, (2.18,ii)

for all values of X,. Hence in these cases there is no

confluence of drifts; consequendy, n;(x) is continuous at
x=B, foriineither ffg” or ¥4

We can now give the complete set of boundary
conditions.

) =0 [ie ff’g”] (2.19,i)

®(B,) = "(B,) [ie g U Sf‘d’] (2.19,ii)
1) _ : e}

) (B) = p; [le I ] (2.19,ii)

where p is the stationary aggregate-source distribution, i.e.
pM =0, (p,1)=1:

o [ 2B

U (a+pyX

The boundary conditions in (2.19,i) and (2.19,iii) follow
from familiar arguments, see for example [MI88], derived
from (2.3) and (2.4) describing the physical behavior when
the buffer is empty and full, respectively.

0<i<K) (2.20)

The boundary conditions in (2.19) form a system of
2(K +1) equauons On substituting the expressions for
[1t (x)} and {n (x)} in (2.15) we obtain a system of
linear equations in the 2(K+ 1) coefficients {a(J } which
has to be solved numerically. Figure 2.1 sketches the
resulting three categories of distributions.

Since the design of the statistical multiplexer typically
aims to give very low loss probabilities for the priority
packets, it is quite reasonable to assume that B = and then
to estimate this loss probability by the probability that an
arriving priority cell finds the buffer content greater than B.
This procedure is further explained at the end of this Section.
It has the advantage of giving a smaller set of linear
equations to be solved. This is because z( )50 implies at
once that a, = (. However no such reduction applies for

{(al”}.

The following are probabilistic interpretations of the
jumps in the distribution 7t;(x) at x=B:

Pr(Z=i, X=B,) =n!"(B)) - ”(B,) 21

D P;

7, (x)

P;

0 B, B 0

—_— X

i€ S’g))

—_— X

ey NgY)

T T
B, B 0 B, B
—_— X

ic 9P

Figure 2.1: Sketches of state distributions obtained for two classes and levels of buffer occupancy.
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Note that

Pr(Z=i, X=B,)>0 (ief) Ny
© o (2.22)
=0 (ie¥p UFY)
The probability atom at X=B, is due to the confluence of
drifts there. Note also that
Pr (Z=i, buffer empty) = n{”(0), and
Pr (=i, buffer full) = p,~x{"(B).

Once the steady state distributions have been computed,
itis straightforward to obtain throughput and delay statistics.
First consider TV, the throughput of priority cells:

TV, throughput of priority cells
= (rate of generation of priority cells)
~ (rate of lost priority cells) .

K
Now, the rate of generation of priority cells = ¥, p, A"
Also, i=0

K

rate of lost priority cells = ¥ {Af-”—c}{p,-—nfl)(B)} .
i=0

Hence,

™™ = f AV By + c[l - )’5 nf”(B)] 2.23)
i=0 i=0

Next consider T‘z’, the throughput of the marked cells.
The rate of lost marked cells has two components: the first
accounts for X, > B, in which case all marked cells which
are generated are lost, and the second is due to X, =B, in
which condition the rate of loss of marked cells is
AP+ —¢) for aggregate-source state i.

rate of lost marked cells

K
= X - @) A

3 AmB)-n" B (A AP )
ie PO Ny
Hence,
@ _ @
™™ =% A"n;'(B))
i=0
- X

i€ N

(2.24)

(AP +AP ~ e} (nV(B)) -1V (B,))

The loss probabilities for the different classes are easily
obtained from their respective throughputs:
. kK
LY, loss probability of class j cells = 1 79/ 3 A p,
i=0

(2.25)

Finally consider the distribution of delay seen by arriving
cells of the priority class. The delay distribution in the fluid
model is easily obtained from the buffer content distribution
seen by arriving priority cells.

w (1), Pr (priority cell delay<t)

K
= e T A en) (O<t<B,/c) (2.26)

K
— 2 MU Pr(Z=i,X=B,) (1=B,/c) (226iii)

1 K
= T .-2:6 AN 1P ¢eny (B, /c <t <B/c) (2.26,iii)
Finally,
- B c . M
Pr |priority cell delay = == _T—‘IT 1-Y =’ (B)
i=0

(2.26,iv)

The expression for Pr (=i, X=B,) has been given earlier
in (2.21). The distribution of delay experienced by the
marked cells, W (1), is similarly obtained.

Now consider the modification to the above formula for
the case of an infinite buffer. As explained earlier, this case
is of interest since its solution is easier to compute and it can
typically be used to obtain sharp estimates of the loss and
delay statistics for given, finite B. In (2.26) the throughput
T is now given by the rate at which priority cells are
generated, X p ,.)»5”. Also note that the expression for the
estimate of Pr (X=i, buffer full) is the same as in the case
of a finite buffer, namely, {p; —1:}” (B)}.

)]

Let p**’ denote the traffic intensity at buffer occupancy
levelj,ie.,
K
p®=1 3 pPaa®)p, @27
i=0
1 K
= arP [B[v(l”+v(12)] + o{viP v ]]
o _ X .o .
and, p = " > A p; (2.27,ii)
i=0
1 _K 0 )
= ? aTB [ V) T+ oV, .

In the case of an infinite buffer stability requires that p“) <l

3. SEVERAL LOSS PRIORITIES

Here the results in the preceding Section are extended to
the case where each source generates traffic of an arbitrary
number, say J, of priority classes. As before, each source
has two states with generator G given in (1.1) and, also, the
traffic streams are coupled, i.e. mutually correlated. Loss
priority is implemented by partitioning the buffer into as
many levels of occupancy as there are priority classes; cells
of a particular priority class are either admitted or discarded
depending upon the prevailing level of buffer occupancy.
Each source when in state i (i=1, 2) generates traffic of
class j (j=1,2,..,J) at rate v}’). Hence each of the K
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sources is specified by (G, vV, vy where

v = v V7] The model in the preccdmg Section is
obtained when J=2 with traffic classes 1 and 2 respectively
denoting priority and marked cell streams.

The levels of buffer occupancy are denoted by
Ly, L, ..., L;_, where, as Figure 3.1 shows, the thresholds
are B,, B,, ..., B;_,. By convention By=0and B,=B, the
buffer capacity.

Loss priority is implemented as follows: when the buffer
content is in the buffer occupancy level L i ie.
B; < X, < B;,,, the only cells admitted to the buffer belong
to classes {1,2,..,J—j}. Thus at level L, cells of all
classes are admitted, while at level L;_; only cells of class 1
are  admitted. Moreover, at the boundary B,
(0 <j<J-1)cells of class (J—j) are admitted only if their
presence does not cause the buffer occupancy to exceed
B;,,. Thatis, at the upper boundary of each level, cells of
the class with the lowest priority, among those admitted at
the level, may be lost and the loss rate is determined by the
residual capacity of the channel.

As in Section 2, the state, state space and the generator of
the Markov aggregate-source process are respectively given
by Z,, ¥ and M (see (2.14)). Also, (Z,, X,) is Markov and
the equilibrium distribution is given by ;(x), see (2.9). The
differential equa(ions goveming {m;(x)} are piece-wise
linear: forj = 0 1, ..,J-1

( (”—c) —n (0= 3 m My,
ey

(ied; xe Lj).
(3.1

Here yﬁj ) is the sum of traffic rates of all classes admitted to
the buffer at time ¢, given that £, =i and X, € L. Hence, by

c’;

virtue of the implementation of loss priority, y;”’ is the sum
of the rates at which cells of classes 1, 2 o J—j are
generated when X, =i. Thatis,

Y = z AP (ie¥; j=0,1,..,J-1) (32

where ()»(i ) } have been defined in (2.1). On substituting for
A, we obtain

Y- = iV —c (3.3)

e L, —— L, —

where,
X .
) ))' and C(J) =

p_d
=3 (v —v
k=1

The following uses vector notation to represent (3.1) and
33): forj=0,1,..,J-1,

J~ "
KY vl (34
k=1

4 n(x)D(j) = n(x)M

e (xeL;) 3.5)

where,
D(j) = diag (_C(j) , m(j)_c(j) , 2m(i)_c(j) s Km(i)_c(j) }.

Note the linear growth property of the dlagonal elements of
DY which is the drift matrix for the j™ buffer occupancy
level.

The piece-wise linear form of (3.5) gives the following
structure to the solution: forj =0, 1, ..., J-1,

n(x)zu“')(x):_zg al” ¢ exp(z”x) (xeL))| (36)

Here {z(” ¢f”} are solutions to J separate sets of

eigenvalue problems: forj = 0, 1, ..., J—1,
¢DY =M (i=0,1,...,K) (3D

As noted in Section 2, the specific structure of ®m?, M)
has allowed all the eigenvalues and eigenvectors to be
obtained in closed form [AMS82]. It remains to obtain the
coefficients {af’ )} from the boundary conditions.

For each buffer occupancy level we. separate the
aggregate-source states which give a downward drift to the
buffer content from those which give an upward drift:
G=01,..,J-1)

Eak -{oeff|y“’<c}, gD = (oe Yy >c) 38)

We make the natural assumption that the controls act to
reduce the intake rate as the level of buffer occupancy
increases, i.e.,

Y,O) >y 1) > .- >Y5J 8} (3.9)

O
L e

I
0 B, B,

—> X,, buffer content

Figure 3.1: Levels of buffer occupancy {L;} used in implementing loss priorities.
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forall ie . Consequently,

¥y CHY c Yy
©) (1 J-n 310
$uv' 2%y’ 229y
Arguing as in Section 2 on the basis of the behavior of

@ X, at the thresholds B, B,, ..

with (3.10), we obtain the following complete system of
boundary conditions:

-» B,_,, in conjunction

220) =0 ie9Y) @3.11,D)

: (Jj) (J+1)
) (j+1) (ie¥p” U Sy ..
;7 (Bjy,) =m;"" (B, ) 3.11,ii

ak ) oo, gy G
' "V(B) = p,

(iegy™") (3.11,iii)

The above system of J(K + 1) equations is the generalization
of (2.19). Substitution of the expressions for [nf’)(x)}
given in (3.6) yields a system of linear equations in the
J(K+1) coefficients {a”’} which has to be solved
numerically. This completes the description of the
procedure for calculating ®t(x).

As shown in Figure 2.1, the distributions {r;(x)}
exhibit jumps at the boundaries {B;} of the buffer
occupancy levels and the following probabilistic
interpretation applies to the jumps: (j = 0, I, ..., J~2)
Pr(Z=i, X=B;,,) =n"*"(8B,)) - n(B,,)) (ie¥)

(3.12)
Note that

Pr(Z=i, X=B,,,) >0 (ie¥P ngY*h)

=0 (e¥y U
The throughput of cells of class (J—j) (0<j<J-2),

TV = 3 AY) gli*h (p (3.13)

j+l)_
134

- X {1 -cyPr(z=i, X=B,,,)
i€V ng
This expression is the generalization of (2.24). The
throughput of class 1, the class of highest priority, is

™ = 3 y7~Y 2/"Y(B) + ¢ Pr (buffer full)
ie¥

(3.14)

where,  Pr(bufferfull) = 1- ¥ n’""(B)  (3.15)

ey
The loss probabilities for the varil;us classes are obtained
from their throughputs by the formula in (2.25).

The delay distribution of class 1 cells is a straightforward
generalization of the formulas in (2.26):

W (1), Pr(class 1 cell delay < 1)

1 X j
=S ;o AN 7 (er) (Bj/c<t<B,, /c)
(j=0,1,..,J-1) (3.16,)
L5 AV Pr(Z=i, X=B,) (t = B /c)
ST &N r(x=i, X=B;) (t=B/c
(j=0,1,..,J-1) (3.16,i)

Finally,

Pr |class 1 cell delay = %} = # Pr [buffer full]

(3.16,iii)

The cell delay distributions for all the other classes are
similarly obtained.

4. NUMERICAL INVESTIGATIONS

In this Section we report on numerical results obtained
from fluid models for the performance analysis of statistical
multiplexing with loss priorities. We consider throughout
the case of on-off sources with exponentially distributed on
and off periods. The unit of time is selected to be the mean
on period and the unit of information 10 be equal to the
amount of priority traffic generated in an average on period.
Thus the peak rate of priority traffic is 1 unit of information
per 1 unit of time, i.e. =1 and vé”: 1. This convention
follows from a natural normalization of system parameters.
Incidentally, it considerably simplifies the study of the
effects of varying the jitteriness of the sources which is
caused by increasing or decreasing their mean on and off
periods by the same factor. All that is necessary is to simply
reinterpret the unit of information and the unit of time; in
fluid models no changes in the calculations have to be made.
Due to lack of sgace we only give results for the peak rate of
marked cells (v5) set to 0.5 and the mean off period (1/c)
set 10 0.4. In all the results presented here an infinite buffer
is assumed and the performance results for finite buffers are
inferred, as explained in Section 2.

The trade-off between the loss of marked cells and the
mean delay of the priority cells is displayed in Figure 4.1,
(a)-(b), for K=20 and K=30. These figures show clearly
how the threshold B, as it is varied from 0 to about 3 units
of information, controls the trade-off by decreasing the
marked cells’ loss and increasing the mean delay of the
priority cells. The influence of B, on the trade-off is diluted
considerably if B, is more than a small number in the range
of 1.0to0 2.0.

In Figure 4.2, (a)-(b), the marked cells’ loss and the
priority cells’ mean delay are plotted as a function of the
threshoid for different values of the channel capacity c¢. In
this Figure K=30. The plots show the nonlinear manner in
which decreasing the channel capacity from 22.01 to 14.11
(resulting in p® increasing from 0.58 t0 0.81, and p‘" from
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Figure 4.1: The trade-off between
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Figure 4.2: Effect of the threshold B, on L?, loss probablhty for marked cells and on (W(” ), mean delay for priority cells.
K=30,a=04,B=10;v{"=v{ = 0.0: vi" = 1.0; v =0.5. Observe the logarithmic scale in (b).
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Figure 4.3: G(x), the complementary buffer distribution as seen by an arriving priority cell. G(x) approximates LV for
buffer of size x.
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0.39 10 0.61) causes both the mean delay and the loss
probability to increase.

The complementary distribution of the buffer content as
seen by an arriving priority cell, G(x), is plotted in
Figure 4.3 for different channel capacities, with B, held
fixed at 3 units of information. We recall that G(x) closely
approximates the loss probability of priority cells in a system
with a finite buffer of size x, provided that G(x) is small.

5. CONCLUSIONS
We summarize the salient elements of the paper.

(i) A stochastic fluid model is proposed for statistical
multiplexing with loss priorities. In this model
Markov Modulated Fluid Sources reflect the bursty
and periodic characteristics of cell generation.

(i) Coupling between cell streams of different priorities
models correlations between the streams.

(iii) The model and its analysis extend easily to multiple
priority classes.

(iv) An exact analysis of the fluid model is given. It has
uncovered features of the stationary distribution not
present in prior fluid models. The algorithm for
obtaining the solution 1is efficient since its
computational complexity is dominated by the task of
solving a single system of linear equations of
dimension at most (K +1)J where K is the number of
sources and J is the number of priority classes. (The
complexity is smaller if the infinite buffer
approximation is made.) In particular, the complexity
is independent of the buffer size.

(v) The analysis gives in a straightforward manner the
complete delay distributions for all the cell classes.

(vi) The numerical results clearly demonstrate the trade-off
between delay of the priority cells and the loss
probabilities of the marked cells, as well as the
influence of the threshold in the control of the trade-
off.

A forthcoming work [EM91(b)] will report on

(i)  higher dimensional Markov Modulated Fluid Sources
[EMS91],

(i) multiple types of sources,
(iii) approximations, and

(iv) end-to-end performance of the system in Figure 1.1.
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